8,021 research outputs found

    Virtual reality based upper extremity stroke rehabilitation system.

    Get PDF
    Some studies suggest that the use of Virtual Reality technologies as an assistive technology in combination with conventional therapies can achieve improved results in post stroke rehabilitation. Despite the wealth of ongoing research applied to trying to build a virtual reality based system for upper extremity rehabilitation, there still exists a strong need for a training platform that would provide whole arm rehabilitation. In order to be practical such a system should ideally be low cost (affordable or inexpensive for a common individual or household) and involve minimal therapist involvement. This research outlines some of the applications of virtual reality that have undergone clinical trials with patients suffering from upper extremity functional motor deficits. Furthermore, this thesis presents the design, development, implementation and feasibility testing of a Virtual Reality-based Upper Extremity Stroke Rehabilitation System. Motion sensing technology has been used to capture the real time movement data of the upper extremity and a virtual reality glove has been used to track the flexion/extension of the fingers. A virtual room has been designed with an avatar of the human arm to allow a variety of training tasks to be accomplished. An interface has been established to incorporate the real time data from the hardware to a virtual scene running on a PC. Three different training scenes depicting a real world scenario have been designed. These have been used to analyze the motion patterns of the users while executing the tasks in the virtual environment simulation. A usability study with the healthy volunteers performing the training tasks have been undertaken to study the ease of use, ease of learning and improved motivation in the virtual environment. Moreover this system costing approximately 2725 pounds would provide home based rehabilitation of the whole arm augmenting conventional therapy on a positive level. Statistical analysis of the data and the evaluation studies with the self report methodologies suggests the feasibility of the system for post stroke rehabilitation in home environment

    Use of virtual reality-based training in different fields of rehabilitation: A systematic review and meta-analysis

    Get PDF
    Objectives: To analyse the effectiveness of virtual reality-based interventions within several fields of rehabilitation, and to investigate whether the outcomes of virtual realitybased interventions, in terms of upper or lower limb function, gait and balance, differ with respect to the virtual reality system used. Methods: A search of PubMed database resulted in an initial total of 481 records. Of these, 27 articles were included in the study. A final total of 20 articles, with neurological, orthoapedic, geriatric or paediatric patients, published between 2012 and 2019, were included in the study. Two independent reviewers selected potentially relevant articles based on the inclusion criteria for fulltext reading. They extracted data, and evaluated the methodological quality of each study. Results: Seventeen studies were included in the metaanalysis. Eight studies analysed upper limb function, with no significant evidence that specialized VR is superior to conventional treatment. Regarding Fugl-Meyer scale results, the effect of specialized virtual reality therapy was found to be significantly better than conventional treatment. No significant differences between specialized VR and conventional treatment were observed in effects on hand dexterity and gait. There was a significant difference in effects on balance in favour of specialized virtual reality as compared to conventional treatment. Gaming virtual reality was significantly better than conventional treatment for upper limb function, but not for hand dexterity, gait and balance. Conclusion: Use of specialized virtual reality and gaming virtual reality can be advantageous for treatment of the upper extremity, but not for hand dexterity and gait in all pathologies considered. Specialized virtual reality can improve balance in neurological patients

    An Evaluation of the Suitability of Commercially Available Sensors for Use in a Virtual Reality Prosthetic Arm Motion Tracking Device

    Get PDF
    The loss of a hand or arm is a devastating life event that results in many months of healing and challenging rehabilitation. Technology has allowed the development of an electronic replacement for a lost limb but similar advancements in therapy have not occurred. The situation is made more challenging because people with amputations often do not live near specialized rehabilitation centres. As a result, delays in therapy can worsen common complications like nerve pain and joint stiffness. For children born without a limb, poor compliance with the use of their prosthesis leads to delays in therapy and may affect their development. In many parts of the world, amputation rehabilitation does not exist. Fortunately, we live in an age where advances in technology and engineering can help solve these problems. Virtual reality creates a simulated world or environment through computer animation much like what is seen in modern video games. An experienced team of rehabilitation doctors, therapists, engineers and computer scientists are required to realize a system such as this. A person with an amputation will be taught to control objects in the virtual world by wearing a modified electronic prosthesis. Using computers, it will be possible to analyze his or her movements within the virtual world and improve the wearer's skills. The goals of this system include making the system portable and internet compatible so that people living in remote areas can also receive therapy. The novel approach of using virtual reality to rehabilitate people with upper limb amputations will help them return to normal activities by providing modern and appropriate rehabilitation, reducing medical complications, improving motivation (via gaming modules), advancing health care technology and reducing health care costs. The use of virtual reality technology in the field of amputee rehabilitation is in its earliest stages of development world wide. A virtual environment (VE) will facilitate the early rehabilitation of a patient before they are clinically ready to be fitted with an actual prosthesis. In order to create a successful virtual reality rehabilitation system such as this, an accurate method of tracking the arm in real-time is necessary. A linear displacement sensor and a microelectromechanical system (MEMS) inertial measurement unit (IMU) were used to create a device for capturing the motion of a user's movement with the intent that the data provided by the device be used along with a VE as a virtual rehabilitation tool for new upper extremity amputation patients. This thesis focuses on the design and testing of this motion capture device in order to determine the suitability of current commercially available sensing components as used in this system. Success will be defined by the delivery of accurate position and orientation data from the device so that that data can be used in a virtual environment. Test results show that with current MEMS sensors, the error introduced by double integrating acceleration data is too significant to make an IMU an acceptable choice for position tracking. However, the device designed here has proven to be an excellent cable emulator, and would be well suited if used as an orientation tracker

    Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.

    Get PDF
    Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation. Ten outpatient stroke survivors with chronic (>6 months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week). All participants completed all sessions of the treatment. In total, they received a median of 403 min of upper limb therapy, with 290 min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention. This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness. This trial was retrospectively registered at ClinicalTrials.gov database (registration number NCT03094650 ) on 14 March 2017

    Home-based therapy programmes for upper limb functional recovery following stroke

    Get PDF
    Background: With an increased focus on home-based stroke services and the undertaking of programmes, targeted at upper limb recovery within clinical practice, a systematic review of home-based therapy programmes for individuals with upper limb impairment following stroke was required. Objectives: To determine the effects of home-based therapy programmes for upper limb recovery in patients with upper limb impairment following stroke. Search methods: We searched the Cochrane Stroke Group's Specialised Trials Register (May 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to May 2011), EMBASE (1980 to May 2011), AMED (1985 to May 2011) and six additional databases. We also searched reference lists and trials registers. Selection criteria: Randomised controlled trials (RCTs) in adults after stroke, where the intervention was a home-based therapy programme targeted at the upper limb, compared with placebo, or no intervention or usual care. Primary outcomes were performance in activities of daily living (ADL) and functional movement of the upper limb. Secondary outcomes were performance in extended ADL and motor impairment of the arm. Data collection and analysis: Two review authors independently screened abstracts, extracted data and appraised trials. We undertook assessment of risk of bias in terms of method of randomisation and allocation concealment (selection bias), blinding of outcome assessment (detection bias), whether all the randomised patients were accounted for in the analysis (attrition bias) and the presence of selective outcome reporting. Main results: We included four studies with 166 participants. No studies compared the effects of home-based upper limb therapy programmes with placebo or no intervention. Three studies compared the effects of home-based upper limb therapy programmes with usual care. Primary outcomes: we found no statistically significant result for performance of ADL (mean difference (MD) 2.85; 95% confidence interval (CI) -1.43 to 7.14) or functional movement of the upper limb (MD 2.25; 95% CI -0.24 to 4.73)). Secondary outcomes: no statistically significant results for extended ADL (MD 0.83; 95% CI -0.51 to 2.17)) or upper limb motor impairment (MD 1.46; 95% CI -0.58 to 3.51). One study compared the effects of a home-based upper limb programme with the same upper limb programme based in hospital, measuring upper limb motor impairment only; we found no statistically significant difference between groups (MD 0.60; 95% CI -8.94 to 10.14). Authors' conclusions: There is insufficient good quality evidence to make recommendations about the relative effect of home-based therapy programmes compared with placebo, no intervention or usual care

    Design of an application with Virtual Reality for neurorehabilitation purposes

    Get PDF
    The purpose of this project is to carry out a study of virtual reality and its applications in hospital environments such as neurorehabilitation or physiotherapy, since it is a technology which is starting to be used nowadays. A 3D virtual reality application for a basic demonstration of a game which could be useful for these trainings will be also done. To achieve this, we will work with Unity, a graphic motor for 3D application and game creation. The hardware for the development of the virtual reality immersive system will be the HTC Vive system, which additionally allows position and movement detection in a room scale using the light signalling technology Lighthouse. This application will focus on the creation of an immersive videogame to track upper extremity movement from the user so he can do his rehabilitation training in a more enjoyable and motivating way, in the form of avoiding obstacles in the videogame using those movements. In addition, the necessary informatic support will be done so the application can be used in a virtual reality headset to improve visual immersion. It will also be obtained some parameter indicating how the game play was

    Reinforced Feedback in Virtual Environment for Plantar Flexor Poststroke Spasticity Reduction and Gait Function Improvement

    Get PDF
    Background. Ankle spasticity is a frequent phenomenon that limits functionality in poststroke patients. Objectives. Our aim was to determine if there was decreased spasticity in the ankle plantar flex (PF) muscles in the plegic lower extremity (LE) and improvement of gait function in stroke patients after traditional rehabilitation (TR) in combination with virtual reality with reinforced feedback, which is termed "reinforced feedback virtual environment" (RFVE). Methods. The evaluation, before and after treatment, of 10 hemiparetic patients was performed using the Modified Ashworth Scale (MAS), Functional Ambulatory Category (FAC), and Functional Independence Measure (FIM). The intervention consisted of 1 hour/day of TR plus 1 hour/day of RFVE (5 days/week for 3 weeks; 15 sessions in total). Results. The MAS and FAC reached statistical significance (P<0.05). The changes in the FIM did not reach statistical significance (P=0.066). The analysis between the ischemic and haemorrhagic patients showed significant differences in favour of the haemorrhagic group in the FIM scale. A significant correlation between the FAC and the months after the stroke was established (P=-0.711). Indeed, patients who most increased their score on the FAC at the end of treatment were those who started the treatment earliest after stroke. Conclusions. The combined treatment of TR and RFVE showed encouraging results regarding the reduction of spasticity and improvement of gait function. An early commencement of the treatment seems to be ideal, and future research should increase the sample size and assessment tools

    Functional Electrical Stimulation mediated by Iterative Learning Control and 3D robotics reduces motor impairment in chronic stroke

    Get PDF
    Background: Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods: Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results: From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions: The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this

    A review of the effectiveness of lower limb orthoses used in cerebral palsy

    Get PDF
    To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO
    corecore