16 research outputs found

    Cubic graphs and the golden mean

    Get PDF
    The connective constant μ(G)\mu(G) of a graph GG is the exponential growth rate of the number of self-avoiding walks starting at a given vertex. We investigate the validity of the inequality μ≥ϕ\mu \ge \phi for infinite, transitive, simple, cubic graphs, where ϕ:=12(1+5)\phi:= \frac12(1+\sqrt 5) is the golden mean. The inequality is proved for several families of graphs including (i) Cayley graphs of infinite groups with three generators and strictly positive first Betti number, (ii) infinite, transitive, topologically locally finite (TLF) planar, cubic graphs, and (iii) cubic Cayley graphs with two ends. Bounds for μ\mu are presented for transitive cubic graphs with girth either 33 or 44, and for certain quasi-transitive cubic graphs.This work was supported in part by the Engineering and Physical Sciences Research Council under grant EP/I03372X/1. ZL acknowledges support from the Simons Foundation under grant #351813 and the National Science Foundation under grant DMS-1608896

    Self-avoiding walks and connective constants

    Full text link
    The connective constant μ(G)\mu(G) of a quasi-transitive graph GG is the asymptotic growth rate of the number of self-avoiding walks (SAWs) on GG from a given starting vertex. We survey several aspects of the relationship between the connective constant and the underlying graph GG. ∙\bullet We present upper and lower bounds for μ\mu in terms of the vertex-degree and girth of a transitive graph. ∙\bullet We discuss the question of whether μ≥ϕ\mu\ge\phi for transitive cubic graphs (where ϕ\phi denotes the golden mean), and we introduce the Fisher transformation for SAWs (that is, the replacement of vertices by triangles). ∙\bullet We present strict inequalities for the connective constants μ(G)\mu(G) of transitive graphs GG, as GG varies. ∙\bullet As a consequence of the last, the connective constant of a Cayley graph of a finitely generated group decreases strictly when a new relator is added, and increases strictly when a non-trivial group element is declared to be a further generator. ∙\bullet We describe so-called graph height functions within an account of "bridges" for quasi-transitive graphs, and indicate that the bridge constant equals the connective constant when the graph has a unimodular graph height function. ∙\bullet A partial answer is given to the question of the locality of connective constants, based around the existence of unimodular graph height functions. ∙\bullet Examples are presented of Cayley graphs of finitely presented groups that possess graph height functions (that are, in addition, harmonic and unimodular), and that do not. ∙\bullet The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with arXiv:1304.721

    Some Optimally Adaptive Parallel Graph Algorithms on EREW PRAM Model

    Get PDF
    The study of graph algorithms is an important area of research in computer science, since graphs offer useful tools to model many real-world situations. The commercial availability of parallel computers have led to the development of efficient parallel graph algorithms. Using an exclusive-read and exclusive-write (EREW) parallel random access machine (PRAM) as the computation model with a fixed number of processors, we design and analyze parallel algorithms for seven undirected graph problems, such as, connected components, spanning forest, fundamental cycle set, bridges, bipartiteness, assignment problems, and approximate vertex coloring. For all but the last two problems, the input data structure is an unordered list of edges, and divide-and-conquer is the paradigm for designing algorithms. One of the algorithms to solve the assignment problem makes use of an appropriate variant of dynamic programming strategy. An elegant data structure, called the adjacency list matrix, used in a vertex-coloring algorithm avoids the sequential nature of linked adjacency lists. Each of the proposed algorithms achieves optimal speedup, choosing an optimal granularity (thus exploiting maximum parallelism) which depends on the density or the number of vertices of the given graph. The processor-(time)2 product has been identified as a useful parameter to measure the cost-effectiveness of a parallel algorithm. We derive a lower bound on this measure for each of our algorithms

    Locality of Random Digraphs on Expanders

    Full text link
    We study random digraphs on sequences of expanders with bounded average degree and weak local limit. The threshold for the existence of a giant strongly connected component, as well as the asymptotic fraction of nodes with giant fan-in or giant fan-out are local, in the sense that they are the same for two sequences with the same weak local limit. The digraph has a bow-tie structure, with all but a vanishing fraction of nodes lying either in the unique strongly connected giant and its fan-in and fan-out, or in sets with small fan-in and small fan-out. All local quantities are expressed in terms of percolation on the limiting rooted graph, without any structural assumptions on the limit, allowing, in particular, for non tree-like limits. In the course of proving these results, we prove that for unoriented percolation, there is a unique giant above criticality, whose size and critical threshold are again local. An application of our methods shows that the critical threshold for bond percolation and random digraphs on preferential attachment graphs is pc=0p_c=0, with an infinite order phase transition at pcp_c.Comment: Added a proof on infinite order phase transition of PA graphs. Revised introduction and moved the proof on applications to appendi

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Laplacians Of Cellular Sheaves: Theory And Applications

    Get PDF
    Cellular sheaves are a discrete model for the theory of sheaves on cell complexes. They carry a canonical cochain complex computing their cohomology. This thesis develops the theory of the Hodge Laplacians of this complex, as well as avenues for their application to concrete engineering and data analysis problems. The sheaf Laplacians so developed are a vast generalization of the graph Laplacians studied in spectral graph theory. As such, they admit generalizations of many results from spectral graph theory and the spectral theory of discrete Hodge Laplacians. A theory of approximation of cellular sheaves is developed, and algorithms for producing spectrally good approximations are given, as well as a generalization of the notion of expander graphs. Sheaf Laplacians allow development of various dynamical systems associated with sheaves, and their behavior is studied. Finally, applications to opinion dynamics, extracting network structure from data, linear control systems, and distributed optimization are outlined
    corecore