1,439 research outputs found

    Improving VANET Protocols via Network Science

    Full text link
    Developing routing protocols for Vehicular Ad Hoc Networks (VANETs) is a significant challenge in these large, self- organized and distributed networks. We address this challenge by studying VANETs from a network science perspective to develop solutions that act locally but influence the network performance globally. More specifically, we look at snapshots from highway and urban VANETs of different sizes and vehicle densities, and study parameters such as the node degree distribution, the clustering coefficient and the average shortest path length, in order to better understand the networks' structure and compare it to structures commonly found in large real world networks such as small-world and scale-free networks. We then show how to use this information to improve existing VANET protocols. As an illustrative example, it is shown that, by adding new mechanisms that make use of this information, the overhead of the urban vehicular broadcasting (UV-CAST) protocol can be reduced substantially with no significant performance degradation.Comment: Proceedings of the 2012 IEEE Vehicular Networking Conference (VNC), Korea, November 201

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    Node Density Estimation in VANETs Using Received Signal Power

    Get PDF
    Accurately estimating node density in Vehicular Ad hoc Networks, VANETs, is a challenging and crucial task. Various approaches exist, yet none takes advantage of physical layer parameters in a distributed fashion. This paper describes a framework that allows individual nodes to estimate the node density of their surrounding network independent of beacon messages and other infrastructure-based information. The proposal relies on three factors: 1) a discrete event simulator to estimate the average number of nodes transmitting simultaneously; 2) a realistic channel model for VANETs environment; and 3) a node density estimation technique. This work provides every vehicle on the road with two equations indicating the relation between 1) received signal strength versus simultaneously transmitting nodes, and 2) simultaneously transmitting nodes versus node density. Access to these equations enables individual nodes to estimate their real-time surrounding node density. The system is designed to work for the most complicated scenarios where nodes have no information about the topology of the network and, accordingly, the results indicate that the system is reasonably reliable and accurate. The outcome of this work has various applications and can be used for any protocol that is affected by node density

    Stable Infrastructure-based Routing for Intelligent Transportation Systems

    Get PDF
    Intelligent Transportation Systems (ITSs) have been instrumental in reshaping transportation towards safer roads, seamless logistics, and digital business-oriented services under the umbrella of smart city platforms. Undoubtedly, ITS applications will demand stable routing protocols that not only focus on Inter-Vehicle Communications but also on providing a fast, reliable and secure interface to the infrastructure. In this paper, we propose a novel stable infrastructure- based routing protocol for urban VANETs. It enables vehicles proactively to maintain fresh routes towards Road-Side Units (RSUs) while reactively discovering routes to nearby vehicles. It builds routes from highly stable connected intersections using a selection policy which uses a new intersection stability metric. Simulation experiments performed with accurate mobility and propagation models have confirmed the efficiency of the new protocol and its adaptability to continuously changing network status in the urban environment

    Vehicular multitier gateway selection algorithm for heterogeneous VANET architectures

    Get PDF
    • …
    corecore