6,588 research outputs found

    Algorithms for the multi-objective vehicle routing problem with hard time windows and stochastic travel time and service time

    Get PDF
    This paper introduces a multi-objective vehicle routing problem with hard time windows and stochastic travel and service times. This problem has two practical objectives: minimizing the operational costs, and maximizing the service level. These objectives are usually conflicting. Thus, we follow a multi-objective approach, aiming to compute a set of Pareto-optimal alternatives with different trade-offs for a decision maker to choose from. We propose two algorithms (a Multi-Objective Memetic Algorithm and a Multi-Objective Iterated Local Search) and compare them to an evolutionary multi-objective optimizer from the literature. We also propose a modified statistical method for the service level calculation. Experiments based on an adapted version of the 56 Solomon instances demonstrate the effectiveness of the proposed algorithms

    A satellite navigation system to improve the management of intermodal drayage

    Get PDF
    The intermodal transport chain can become more efficient by means of a good organization of the drayage movements. Drayage in intermodal container terminals involves the pick up or delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the different vehicles, often with the presence of time windows. The literature shows some works on centralised drayage management, but most of them consider the problem only from a static and deterministic perspective, whereas the work we present here incorporates the knowledge of the real-time position of the vehicles, which permanently enables the planner to reassign tasks in case the problem conditions change. This exact knowledge of position of the vehicles is possible thanks to a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution

    Time and timing in vehicle routing problems

    Get PDF
    The distribution of goods to a set of geographically dispersed customers is a common problem faced by carrier companies, well-known as the Vehicle Routing Problem (VRP). The VRP consists of finding an optimal set of routes that minimizes total travel times for a given number of vehicles with a fixed capacity. Given the demand of each customer and a depot, the optimal set of routes should adhere to the following conditions: ?? Each customer is visited exactly once by exactly one vehicle. ?? All vehicle routes start and end at the depot. ?? Every route has a total demand not exceeding the vehicle capacity. The travel times between any two potential locations are given as input to the problem. Consequently, the total travel is computed by summing up the travel time over the chosen routes. In reality, carrier companies are faced with a number of other issues not conveyed in the VRP. The research in this thesis introduces a number of realistic variants of the VRP. These variants consider the VRP as a core component and incorporate additional features. By definition the VRP is NP-hard. Throughout the years a vast amount of research was aimed at developing both exact and heuristic solution procedures. Building on this established literature, solution procedures are developed to fit the variants proposed in this thesis. The standard VRP considers that the travel time between any pair of locations is constant throughout the day. However, congestion is present in most road networks. Considering traffic congestion results in time-dependent travel times, where the travel time between two location depends not only on the distance between them but also on the time of day one chooses to traverse this distance. Time-dependent travel times are considered in Chapters 2 and 3 of this thesis. Thus, in these Chapters we incorporate the time dimension into the VRP. The standard VRP does not take into account any customer service aspect. The customers are presumed to be available to receive their goods upon arrival of the vehicles. However, a number of carrier companies quote their expected arrival time to their customers. We introduce the concept of self-imposed time windows (SITW). SITW reflect the fact that the carrier company decides on when to visit the customer and communicates this to the customer. Once a time window is quoted to a customer the carrier company strives to provide service within this time window. SITW differ from time windows in the widely studied VRP with time windows (VRPTW), as the latter are exogenous constraints. In Chapters 4 and 5 SITW are endogenous decisions in stochastic environments. Thus, in addition to the sequencings decisions required by the VRP further timing decisions are needed. This thesis extends the VRP in two major dimensions: time-dependent travel times and self-imposed time windows. In reality carrier companies are faced with various uncertainties. The presented models incorporated some of these uncertainties by addressing three stochastic aspects: (I) In Chapter 3 stochastic service times are considered. (II) In Chapter 4, stochasticity in travel time is modeled to describes variability caused by random events such as car accidents or vehicle break down. (III) Finally, in Chapter 5 the objective was to construct a long term plan for providing consistent service to reoccurring customers. Stochasticity in this thesis is treated in an a priori manner. The plan, consisting of routes and timing decisions where necessary, is determined beforehand and is not modified according to the realization of the random events. Chapter 2 addresses environmental concerns by studying CO2 emissions in a timedependent vehicle routing problem environment. In addition to the decisions required for the assignment and scheduling of customers to vehicles, the vehicle speed limit is considered. The emissions per kilometer as a function of speed, is a function with a unique minimum speed v*. However, we show that limiting vehicle speed to this v* might be sub-optimal, in terms of total emissions. We adapted a Tabu search procedure for the proposed model. Furthermore, upper and lower bounds on the total amount of emissions that may be saved are presented. Quantifying the tradeoff between minimizing travel time as opposed to CO2 emissions is an important contribution. Another important contribution lies in incorporating fuel costs in the optimization. As fuel costs are correlated with CO2 emissions, Chapter 2 shows that even in today’s cost structure limiting vehicle speeds is beneficial. Chapter 3 defines the perturbed time-dependent VRP (P-TDVRP) model which is designed to handle unexpected delays at the various customer locations. A solution method that combines disruptions in a Tabu Search procedure is proposed. In Chapter 3 we identify situations capable of absorbing delays. i.e. where inserting a delay will lead to an increase in travel time that is less than the delay length itself. Based on this, assumptions with respect to the solution structure of P-TDVRP are formulated and validated. Furthermore, most experiments showed that the additional travel time required by the P-TDVRP, when compared to the travel time required by the TDVRP, was justified. In Chapter 4 the notion of self imposed time windows is defined and embedded in the VRP-SITW model. The objective of this problem is to minimize delay costs (caused by late arrivals at customers) as well as traveling time. The problem is optimized under various disruptions in travel times. The basic mechanism of dealing with these disruptions is allocating time buffers throughout the routes. Thus, additional timing decisions are taken. The time buffers attempt to reduce potential damage of disruptions. The solution approach combines a linear programming model with a local search heuristic. In Chapter 4, two main types of experiments were conducted: one compares the VRP with VRP-SITW while the other compares VRPTW with VRPSITW. The first set of experiments assessed the increase in operational costs caused by incorporating SITW in the VRP. The second set of experiments enabled evaluating the savings in operational costs by using flexible time windows, when compared to the VRPTW. Chapter 5 extends the customer service dimension by considering the consistent vehicle routing problem. Consistency is defined by having the same driver visiting the same customers at roughly the same time. As such, two main dimensions of consistency are identified in the literature, driver- and temporal consistency. In Chapter 5, driver consistency is imposed by having the same driver visit the same customers. Furthermore, we impose temporal consistency by SITW. A stochastic programming formulation is presented for the consistent VRP with stochastic customers. An exact solution method is proposed by adapting the 0-1 integer L- shaped algorithm to the problem. The method was able to solve the majority of test instances to optimality

    Planning and Scheduling Transportation Vehicle Fleet in a Congested Traffic Environment

    Get PDF
    Transportation is a main component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routing is a crucial management problem. Despite numerous publications dealing with efficient scheduling methods for vehicle routing, very few addressed the inherent stochastic nature of travel times in this problem. In this paper, a vehicle routing problem with time windows and stochastic travel times due to potential traffic congestion is considered. The approach developed introduces mainly the traffic congestion component based on queueing theory. This is an innovative modeling scheme to capture the stochastic behavior of travel times. A case study is used both to illustrate the appropriateness of the approach as well as to show that time-independent solutions are often unrealistic within a congested traffic environment which is often the case on the european road networkstransportation; vehicle fleet; planning; scheduling; congested traffic

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Agent-based transportation planning compared with scheduling heuristics

    Get PDF
    Here we consider the problem of dynamically assigning vehicles to transportation orders that have di¤erent time windows and should be handled in real time. We introduce a new agent-based system for the planning and scheduling of these transportation networks. Intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. We use simulation to compare the on-time delivery percentage and the vehicle utilization of an agent-based planning system to a traditional system based on OR heuristics (look-ahead rules, serial scheduling). Numerical experiments show that a properly designed multi-agent system may perform as good as or even better than traditional methods

    Dynamic approach to solve the daily drayage problem with travel time uncertainty

    Get PDF
    The intermodal transport chain can become more e cient by means of a good organization of drayage movements. Drayage in intermodal container terminals involves the pick up and delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the di erent vehicles, often with the presence of time windows. This scheduling has traditionally been done once a day and, under these conditions, any unexpected event could cause timetable delays. We propose to use the real-time knowledge about vehicle position to solve this problem, which permanently allows the planner to reassign tasks in case the problem conditions change. This exact knowledge of the position of the vehicles is possible using a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution
    • …
    corecore