702 research outputs found

    Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010.

    Get PDF
    Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 10(6 )km(2). The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests

    Upside-down fluxes Down Under: CO2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest

    Get PDF
    Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen forests because of their moderate climates and subtle changes in canopy phenology. We assessed the climatic and biotic drivers of the seasonality of net ecosystem–atmosphere CO2 exchange (NEE) of a eucalyptus-dominated forest near Sydney, Australia, using the eddy covariance method. The climate is characterised by a mean annual precipitation of 800mm and a mean annual temperature of 18°C, hot summers and mild winters, with highly variable precipitation. In the 4-year study, the ecosystem was a sink each year (−225gCm−2yr−1 on average, with a standard deviation of 108gCm−2yr−1); inter-annual variations were not related to meteorological conditions. Daily net C uptake was always detected during the cooler, drier winter months (June through August), while net C loss occurred during the warmer, wetter summer months (December through February). Gross primary productivity (GPP) seasonality was low, despite longer days with higher light intensity in summer, because vapour pressure deficit (D) and air temperature (Ta) restricted surface conductance during summer while winter temperatures were still high enough to support photosynthesis. Maximum GPP during ideal environmental conditions was significantly correlated with remotely sensed enhanced vegetation index (EVI; r2 = 0.46) and with canopy leaf area index (LAI; r2= 0.29), which increased rapidly after mid-summer rainfall events. Ecosystem respiration (ER) was highest during summer in wet soils and lowest during winter months. ER had larger seasonal amplitude compared to GPP, and therefore drove the seasonal variation of NEE. Because summer carbon uptake may become increasingly limited by atmospheric demand and high temperature, and because ecosystem respiration could be enhanced by rising temperatures, our results suggest the potential for large-scale seasonal shifts in NEE in sclerophyll vegetation under climate change.The Australian Education Investment Fund, Australian Terrestrial Ecosystem Research Network, Australian Research Council and Hawkesbury Institute for the Environment at Western Sydney University supported this work. We thank Jason Beringer, Helen Cleugh, Ray Leuning and Eva van Gorsel for advice and support. Senani Karunaratne provided soil classification details

    Interannual Variations and Trends in Global Land Surface Phenology Derived from Enhanced Vegetation Index During 1982-2010

    Get PDF
    Land swiace phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstmted to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This srudy detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examIned across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and OSL varied considerably during 1982-2010 across the globe. Generally, the interarmual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative OSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3 decades. OGI mainly showed late trends in the Southern Hemisphere of Africa while GSL was reversed from reduced GSL trends (1982-1999) to prolonged trends (2000-2010). In Australia, GSL exhibited considerable interannual variation, but the consistent trend lacked presence in most regions. Finally, the proportion of pixels with significant trends was less than I% in most of climate regions although it could be as large as 10%

    Evaluation of the impact of climate and human induced changes on the Nigerian forest using remote sensing

    Get PDF
    The majority of the impact of climate and human induced changes on forest are related to climate variability and deforestation. Similarly, changes in forest phenology due to climate variability and deforestation has been recognized as being among the most important early indicators of the impact of environmental change on forest ecosystem functioning. Comprehensive data on baseline forest cover changes including deforestation is required to provide background information needed for governments to make decision on Reducing Emissions from Deforestation and Forest Degradation (REED). Despite the fact that Nigeria ranks among the countries with highest deforestation rates based on Food and Agricultural Organization estimates, only a few studies have aimed at mapping forest cover changes at country scales. However, recent attempts to map baseline forest cover and deforestation in Nigeria has been based on global scale remote sensing techniques which do not confirm with ground based observations at country level. The aim of this study is two-fold: firstly, baseline forest cover was estimated using an ‘adaptive’ remote sensing model that classified forest cover with high accuracies at country level for the savanna and rainforest zones. The first part of this study also compared the potentials of different MODIS data in detecting forest cover changes at regional (cluster level) scale. The second part of this study explores the trends and response of forest phenology to rainfall across four forest clusters from 2002 to 2012 using vegetation index data from the MODIS and rainfall data obtained from the TRMM.Tertiary Education Trust Fund, Nigeri

    Vegetation Dynamics in Ecuador

    Get PDF
    Global forest cover has suffered a dramatic reduction during recent decades, especially in tropical regions, which is mainly due to human activities caused by enhanced population pressures. Nevertheless, forest ecosystems, especially tropical forests, play an important role in the carbon cycle functioning as carbon stocks and sinks, which is why conservation strategies are of utmost importance respective to ongoing global warming. In South America the highest deforestation rates are observed in Ecuador, but an operational surveillance system for continuous forest monitoring, along with the determination of deforestation rates and the estimation of actual carbon socks is still missing. Therefore, the present investigation provides a functional tool based on remote sensing data to monitor forest stands at local, regional and national scales. To evaluate forest cover and deforestation rates at country level satellite data was used, whereas LiDAR data was utilized to accurately estimate the Above Ground Biomass (AGB; carbon stocks) at catchment level. Furthermore, to provide a cost-effective tool for continuous forest monitoring of the most vulnerable parts, an Unmanned Aerial Vehicle (UAV) was deployed and equipped with various sensors (RBG and multispectral camera). The results showed that in Ecuador total forest cover was reduced by about 24% during the last three decades. Moreover, deforestation rates have increased with the beginning of the new century, especially in the Andean Highland and the Amazon Basin, due to enhanced population pressures and the government supported oil and mining industries, besides illegal timber extractions. The AGB stock estimations at catchment level indicated that most of the carbon is stored in natural ecosystems (forest and páramo; AGB ~98%), whereas areas affected by anthropogenic land use changes (mostly pastureland) lost nearly all their storage capacities (AGB ~2%). Furthermore, the LiDAR data permitted the detection of the forest structure, and therefore the identification of the most vulnerable parts. To monitor these areas, it could be shown that UAVs are useful, particularly when equipped with an RGB camera (AGB correlation: R² > 0.9), because multispectral images suffer saturation of the spectral bands over dense natural forest stands, which results in high overestimations. In summary, the developed operational surveillance systems respective to forest cover at different spatial scales can be implemented in Ecuador to promote conservation/ restoration strategies and to reduce the high deforestation rates. This may also mitigate future greenhouse gas emissions and guarantee functional ecosystem services for local and regional populations

    Land cover mapping of a tropical region by integrating multi-year data into an annual time series

    Get PDF
    Generating annual land cover maps in the tropics based on optical data is challenging because of the large amount of invalid observations resulting from the presence of clouds and haze or high moisture content in the atmosphere. This study proposes a strategy to build an annual time series from multi-year data to fill data gaps. The approach was tested using the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index and spectral bands as input for land cover classification of Colombia. In a second step, selected ancillary variables, such as elevation, L-band Radar, and precipitation were added to improve overall accuracy. Decision-tree classification was used for assigning eleven land cover classes using the International Geosphere-Biosphere Programme (IGBP) legend. Maps were assessed by their spatial confidence derived from the decision tree approach and conventional accuracy measures using reference data and statistics based on the error matrix. The multi-year data integration approach drastically decreased the area covered by invalid pixels. Overall accuracy of land cover maps significantly increased from 58.36% using only optical time series of 2011 filtered for low quality observations, to 68.79% when using data for 2011 ± 2 years. Adding elevation to the feature set resulted in 70.50% accuracy
    • …
    corecore