22 research outputs found

    A Parametric Simplex Algorithm for Linear Vector Optimization Problems

    Get PDF
    In this paper, a parametric simplex algorithm for solving linear vector optimization problems (LVOPs) is presented. This algorithm can be seen as a variant of the multi-objective simplex (Evans-Steuer) algorithm [12]. Different from it, the proposed algorithm works in the parameter space and does not aim to find the set of all efficient solutions. Instead, it finds a solution in the sense of Loehne [16], that is, it finds a subset of efficient solutions that allows to generate the whole frontier. In that sense, it can also be seen as a generalization of the parametric self-dual simplex algorithm, which originally is designed for solving single objective linear optimization problems, and is modified to solve two objective bounded LVOPs with the positive orthant as the ordering cone in Ruszczynski and Vanderbei [21]. The algorithm proposed here works for any dimension, any solid pointed polyhedral ordering cone C and for bounded as well as unbounded problems. Numerical results are provided to compare the proposed algorithm with an objective space based LVOP algorithm (Benson algorithm in [13]), that also provides a solution in the sense of [16], and with Evans-Steuer algorithm [12]. The results show that for non-degenerate problems the proposed algorithm outperforms Benson algorithm and is on par with Evan-Steuer algorithm. For highly degenerate problems Benson's algorithm [13] excels the simplex-type algorithms; however, the parametric simplex algorithm is for these problems computationally much more efficient than Evans-Steuer algorithm.Comment: 27 pages, 4 figures, 5 table

    PaMILO: A Solver for Multi-Objective Mixed Integer Linear Optimization and Beyond

    Full text link
    In multi-objective optimization, several potentially conflicting objective functions need to be optimized. Instead of one optimal solution, we look for the set of so called non-dominated solutions. An important subset is the set of non-dominated extreme points. Finding it is a computationally hard problem in general. While solvers for similar problems exist, there are none known for multi-objective mixed integer linear programs (MOMILPs) or multi-objective mixed integer quadratically constrained quadratic programs (MOMIQCQPs). We present PaMILO, the first solver for finding non-dominated extreme points of MOMILPs and MOMIQCQPs. PaMILO provides an easy to use interface and is implemented in C++17. It solves occurring subproblems employing either CPLEX or Gurobi. PaMILO adapts the dual-benson algorithm for multi-objective linear programming (MOLP). As it was previously only defined for MOLPs, we describe how it can be adapted for MOMILPs, MOMIQCQPs and even more problem classes in the future

    Two-phase strategies for the bi-objective minimum spanning tree problem

    Get PDF
    This paper presents a new two-phase algorithm for the bi-objective minimum spanning tree (BMST) prob-lem. In the first phase, it computes the extreme supported efficient solutions resorting to both mathematicalprogramming and algorithmic approaches, while the second phase is devoted to obtaining the remaining ef-ficient solutions (non-extreme supported and non-supported). This latter phase is based on a new recursiveprocedure capable of generating all the spanning trees of a connected graph through edge interchanges basedon increasing evaluation of non-zero reduced costs of associated weighted linear programs. Such a procedureexploits a common property of a wider class of problems to which the minimum spanning tree (MST) prob-lem belongs, that is the spanning tree structure of its basic feasible solutions. Computational experimentsare conducted on different families of graphs and with different types of cost. These results show that thisnew two-phase algorithm is correct, very easy to implement and it allows one to extract conclusions on thedifficulty of finding the entire set of Pareto solutions of the BMST problem depending on the graph topologyand the possible correlation of the edge cost

    A Comparison of Benson’s Outer Approximation Algorithm with an Extended Version of Multiobjective Simplex Algorithm

    Get PDF
    The multiple objective simplex algorithm and its variants work in the decision variable space to find the set of all efficient extreme points of multiple objective linear programming (MOLP). Other approaches to the problem find either the entire set of all efficient solutions or a subset of them and also return the corresponding objective values (nondominated points). This paper presents an extension of the multiobjective simplex algorithm (MSA) to generate the set of all nondominated points and no redundant ones. This extended version is compared to Benson’s outer approximation (BOA) algorithm that also computes the set of all nondominated points of the problem. Numerical results on nontrivial MOLP problems show that the total number of nondominated points returned by the extended MSA is the same as that returned by BOA for most of the problems considered

    An outer approximation algorithm for multi-objective mixed-integer linear and non-linear programming

    Full text link
    In this paper, we present the first outer approximation algorithm for multi-objective mixed-integer linear programming problems with any number of objectives. The algorithm also works for certain classes of non-linear programming problems. It produces the non-dominated extreme points as well as the facets of the convex hull of these points. The algorithm relies on an oracle which solves single-objective weighted-sum problems and we show that the required number of oracle calls is polynomial in the number of facets of the convex hull of the non-dominated extreme points in the case of multiobjective mixed-integer programming (MOMILP). Thus, for MOMILP problems for which the weighted-sum problem is solvable in polynomial time, the facets can be computed with incremental-polynomial delay. From a practical perspective, the algorithm starts from a valid lower bound set for the non-dominated extreme points and iteratively improves it. Therefore it can be used in multi-objective branch-and-bound algorithms and still provide a valid bound set at any stage, even if interrupted before converging. Moreover, the oracle produces Pareto optimal solutions, which makes the algorithm also attractive from the primal side in a multi-objective branch-and-bound context. Finally, the oracle can also be called with any relaxation of the primal problem, and the obtained points and facets still provide a valid lower bound set. A computational study on a set of benchmark instances from the literature and new non-linear multi-objective instances is provided.Comment: 21 page
    corecore