351 research outputs found

    Analysis of a discrete-time single-server queue with an occasional extra server

    Get PDF
    We consider a discrete-time queueing system having two distinct servers: one server, the "regular" server, is permanently available, while the second server, referred to as the "extra" server, is only allocated to the system intermittently. Apart from their availability, the two servers are identical, in the sense that the customers have deterministic service times equal to 1 fixed-length time slot each, regardless of the server that processes them. In this paper, we assume that the extra server is available during random "up-periods", whereas it is unavailable during random "down-periods". Up-periods and down-periods occur alternately on the time axis. The up-periods have geometrically distributed lengths (expressed in time slots), whereas the distribution of the lengths of the down-periods is general, at least in the first instance. Customers enter the system according to a general independent arrival process, i.e., the numbers of arrivals during consecutive time slots are i.i.d. random variables with arbitrary distribution. For this queueing model, we are able to derive closed-form expressions for the steady-state probability generating functions (pgfs) and the expected values of the numbers of customers in the system at various observation epochs, such as the start of an up-period, the start of a down-period and the beginning of an arbitrary time slot. At first sight, these formulas, however, appear to contain an infinite number of unknown constants. One major issue of the mathematical analysis turns out to be the determination of these constants. In the paper, we show that restricting the pgf of the down-periods to be a rational function of its argument, brings about the crucial simplification that the original infinite number of unknown constants appearing in the formulas can be expressed in terms of a finite number of independent unknowns. The latter can then be adequately determined based on the bounded nature of pgfs inside the complex unit disk, and an extensive use of properties of polynomials. Various special cases, both from the perspective of the arrival distribution and the down-period distribution, are discussed. The results are also illustrated by means of relevant numerical examples. Possible applications of this type of queueing model are numerous: the extra server could be the regular server of another similar queue, helping whenever an idle period occurs in its own queue; a geometric distribution for these idle times is then a very natural modeling assumption. A typical example would be the situation at the check-in counter at a gate in an airport: the regular server serves customers with a low-fare ticket, while the extra server gives priority to the business-class and first-class customers, but helps checking regular customers, whenever the priority line is empty. (C) 2017 Elsevier B.V. All rights reserved

    Many Server Scaling of the N-System Under FCFS-ALIS

    Full text link
    The N-System with independent Poisson arrivals and exponential server-dependent service times under first come first served and assign to longest idle server policy has explicit steady state distribution. We scale the arrival and the number of servers simultaneously, and obtain the fluid and central limit approximation for the steady state. This is the first step towards exploring the many server scaling limit behavior of general parallel service systems

    Introduction to Queueing Theory and Stochastic Teletraffic Models

    Full text link
    The aim of this textbook is to provide students with basic knowledge of stochastic models that may apply to telecommunications research areas, such as traffic modelling, resource provisioning and traffic management. These study areas are often collectively called teletraffic. This book assumes prior knowledge of a programming language, mathematics, probability and stochastic processes normally taught in an electrical engineering course. For students who have some but not sufficiently strong background in probability and stochastic processes, we provide, in the first few chapters, background on the relevant concepts in these areas.Comment: 298 page

    Discrete-time queues with variable service capacity: a basic model and its analysis

    Get PDF
    In this paper, we present a basic discrete-time queueing model whereby the service process is decomposed in two (variable) components: the demand of each customer, expressed in a number of work units needed to provide full service of the customer, and the capacity of the server, i.e., the number of work units that the service facility is able to perform per time unit. The model is closely related to multi-server queueing models with server interruptions, in the sense that the service facility is able to deliver more than one unit of work per time unit, and that the number of work units that can be executed per time unit is not constant over time. Although multi-server queueing models with server interruptions-to some extent-allow us to study the concept of variable capacity, these models have a major disadvantage. The models are notoriously hard to analyze and even when explicit expressions are obtained, these contain various unknown probabilities that have to be calculated numerically, which makes the expressions difficult to interpret. For the model in this paper, on the other hand, we are able to obtain explicit closed-form expressions for the main performance measures of interest. Possible applications of this type of queueing model are numerous: the variable service capacity could model variable available bandwidths in communication networks, a varying production capacity in factories, a variable number of workers in an HR-environment, varying capacity in road traffic, etc

    Scaling limits for infinite-server systems in a random environment

    Get PDF
    This paper studies the effect of an overdispersed arrival process on the performance of an infinite-server system. In our setup, a random environment is modeled by drawing an arrival rate Λ\Lambda from a given distribution every Δ\Delta time units, yielding an i.i.d. sequence of arrival rates Λ1,Λ2,…\Lambda_1,\Lambda_2, \ldots. Applying a martingale central limit theorem, we obtain a functional central limit theorem for the scaled queue length process. We proceed to large deviations and derive the logarithmic asymptotics of the queue length's tail probabilities. As it turns out, in a rapidly changing environment (i.e., Δ\Delta is small relative to Λ\Lambda) the overdispersion of the arrival process hardly affects system behavior, whereas in a slowly changing random environment it is fundamentally different; this general finding applies to both the central limit and the large deviations regime. We extend our results to the setting where each arrival creates a job in multiple infinite-server queues

    Revenue Management of Reusable Resources with Advanced Reservations

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137568/1/poms12672_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137568/2/poms12672.pd
    • …
    corecore