2,895 research outputs found

    Time decomposition of multi-period supply chain models

    Get PDF
    Many supply chain problems involve discrete decisions in a dynamic environment. The inventory routing problem is an example that combines the dynamic control of inventory at various facilities in a supply chain with the discrete routing decisions of a fleet of vehicles that moves product between the facilities. We study these problems modeled as mixed-integer programs and propose a time decomposition based on approximate inventory valuation. We generate the approximate value function with an algorithm that combines data fitting, discrete optimization and dynamic programming methodology. Our framework allows the user to specify a class of piecewise linear, concave functions from which the algorithm chooses the value function. The use of piecewise linear concave functions is motivated by intuition, theory and practice. Intuitively, concavity reflects the notion that inventory is marginally more valuable the closer one is to a stock-out. Theoretically, piecewise linear concave functions have certain structural properties that also hold for finite mixed-integer program value functions. (Whether the same properties hold in the infinite case is an open question, to our knowledge.) Practically, piecewise linear concave functions are easily embedded in the objective function of a maximization mixed-integer or linear program, with only a few additional auxiliary continuous variables. We evaluate the solutions generated by our value functions in a case study using maritime inventory routing instances inspired by the petrochemical industry. The thesis also includes two other contributions. First, we review various data fitting optimization models related to piecewise linear concave functions, and introduce new mixed-integer programming formulations for some cases. The formulations may be of independent interest, with applications in engineering, mixed-integer non-linear programming, and other areas. Second, we study a discounted, infinite-horizon version of the canonical single-item lot-sizing problem and characterize its value function, proving that it inherits all properties of interest from its finite counterpart. We then compare its optimal policies to our algorithm's solutions as a proof of concept.PhDCommittee Chair: George Nemhauser; Committee Member: Ahmet Keha; Committee Member: Martin Savelsbergh; Committee Member: Santanu Dey; Committee Member: Shabbir Ahme

    Multi-item capacitated lot-sizing problems with setup times and pricing decisions

    Full text link
    We study a multi-item capacitated lot-sizing problem with setup times and pricing (CLSTP) over a finite and discrete planning horizon. In this class of problems, the demand for each independent item in each time period is affected by pricing decisions. The corresponding demands are then satisfied through production in a single capacitated facility or from inventory, and the goal is to set prices and determine a production plan that maximizes total profit. In contrast with many traditional lot-sizing problems with fixed demands, we cannot, without loss of generality, restrict ourselves to instances without initial inventories, which greatly complicates the analysis of the CLSTP. We develop two alternative Dantzig–Wolfe decomposition formulations of the problem, and propose to solve their relaxations using column generation and the overall problem using branch-and-price. The associated pricing problem is studied under both dynamic and static pricing strategies. Through a computational study, we analyze both the efficacy of our algorithms and the benefits of allowing item prices to vary over time. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65027/1/20394_ftp.pd

    On-line lot-sizing with perceptrons

    Get PDF
    x+167hlm.;24c

    Integrated market selection and production planning: complexity and solution approaches

    Get PDF
    Emphasis on effective demand management is becoming increasingly recognized as an important factor in operations performance. Operations models that account for supply costs and constraints as well as a supplier's ability to in°uence demand characteristics can lead to an improved match between supply and demand. This paper presents a new class of optimization models that allow a supplier to select, from a set of potential markets, those markets that provide maximum profit when production/procurement economies of scale exist in the supply process. The resulting optimization problem we study possesses an interesting structure and we show that although the general problem is NP-complete, a number of relevant and practical special cases can be solved in polynomial time. We also provide a computationally very effcient and intuitively attractive heuristic solution procedure that performs extremely well on a large number of test instances

    Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems

    Get PDF
    We introduce an algorithm design technique for a class of combinatorial optimization problems with concave costs. This technique yields a strongly polynomial primal-dual algorithm for a concave cost problem whenever such an algorithm exists for the fixed-charge counterpart of the problem. For many practical concave cost problems, the fixed-charge counterpart is a well-studied combinatorial optimization problem. Our technique preserves constant factor approximation ratios, as well as ratios that depend only on certain problem parameters, and exact algorithms yield exact algorithms. Using our technique, we obtain a new 1.61-approximation algorithm for the concave cost facility location problem. For inventory problems, we obtain a new exact algorithm for the economic lot-sizing problem with general concave ordering costs, and a 4-approximation algorithm for the joint replenishment problem with general concave individual ordering costs
    • 

    corecore