626 research outputs found

    Characterization and uncertainty analysis of siliciclastic aquifer-fault system

    Get PDF
    The complex siliciclastic aquifer system underneath the Baton Rouge area, Louisiana, USA, is fluvial in origin. The east-west trending Baton Rouge fault and Denham Springs-Scotlandville fault cut across East Baton Rouge Parish and play an important role in groundwater flow and aquifer salinization. To better understand the salinization underneath Baton Rouge, it is imperative to study the hydrofacies architecture and the groundwater flow field of the Baton Rogue aquifer-fault system. This is done through developing multiple detailed hydrofacies architecture models and multiple groundwater flow models of the aquifer-fault system, representing various uncertain model propositions. The hydrofacies architecture models focus on the Miocene-Pliocene depth interval that consists of the “1,200-foot” sand, “1,500-foot” sand, “1,700-foot” sand and the “2,000-foot” sand, as these aquifer units are classified and named by their approximate depth below ground level. The groundwater flow models focus only on the “2,000-foot” sand. The study reveals the complexity of the Baton Rouge aquifer-fault system where the sand deposition is non-uniform, different sand units are interconnected, the sand unit displacement on the faults is significant, and the spatial distribution of flow pathways through the faults is sporadic. The identified locations of flow pathways through the Baton Rouge fault provide useful information on possible windows for saltwater intrusion from the south. From the results we learn that the “1,200-foot” sand, “1,500-foot” sand and the “1,700-foot” sand should not be modeled separately since they are very well connected near the Baton Rouge fault, while the “2,000-foot” sand between the two faults is a separate unit. Results suggest that at the “2,000-foot” sand the Denham Springs-Scotlandville fault has much lower permeability in comparison to the Baton Rouge fault, and that the Baton Rouge fault plays an important role in the aquifer salinization

    A comprehensive review on the design and optimization of surface water quality monitoring networks

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. The surface water quality monitoring network (WQMN) is crucial for effective water environment management. How to design an optimal monitoring network is an important scientific and engineering problem that presents a special challenge in the smart city era. This comprehensive review provides a timely and systematic overview and analysis on quantitative design approaches. Bibliometric analysis shows the chronological pattern, journal distribution, authorship, citation and country pattern. Administration types of water bodies and design methods are classified. The flexibility characteristics of four types of direct design methods and optimization objectives are systematically summarized, and conclusions are drawn from experiences with WQMN parameters, station locations, and sampling frequency and water quality indicators. This paper concludes by identifying four main future directions that should be pursued by the research community. This review sheds light on how to better design and construct WQMNs.Key-Area Research and Development Program of Guangdong ProvinceNational Natural Science Foundation of ChinaInnovation Project of Universities in Guangdong Province-Natural Scienc

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Stochastic simulation methods for structural reliability under mixed uncertainties

    Get PDF
    Uncertainty quantification (UQ) has been widely recognized as one of the most important, yet challenging task in both structural engineering and system engineering, and the current researches are mainly on the proper treatment of different types of uncertainties, resulting from either natural randomness or lack of information, in all related sub-problems of UQ such as uncertainty characterization, uncertainty propagation, sensitivity analysis, model updating, model validation, risk and reliability analysis, etc. It has been widely accepted that those uncertainties can be grouped as either aleatory uncertainty or epistemic uncertainty, depending on whether they are reducible or not. For dealing with the above challenge, many non-traditional uncertainty characterization models have been developed, and those models can be grouped as either imprecise probability models (e.g., probability-box model, evidence theory, second-order probability model and fuzzy probability model) or non-probabilistic models (e.g., interval/convex model and fuzzy set theory). This thesis concerns the efficient numerical propagation of the three kinds of uncertainty characterization models, and for simplicity, the precise probability model, the distribution probability-box model, and the interval model are taken as examples. The target is to develop efficient numerical algorithms for learning the functional behavior of the probabilistic responses (e.g., response moments and failure probability) with respect to the epistemic parameters of model inputs, which is especially useful for making reliable decisions even when the available information on model inputs is imperfect. To achieve the above target, my thesis presents three main developments for improving the Non-intrusive Imprecise Stochastic Simulation (NISS), which is a general methodology framework for propagating the imprecise probability models with only one stochastic simulation. The first development is on generalizing the NISS methods to the problems with inputs including both imprecise probability models and non-probability models. The algorithm is established by combining Bayes rule and kernel density estimation. The sensitivity indices of the epistemic parameters are produced as by-products. The NASA Langley UQ challenge is then successfully solved by using the generalized NISS method. The second development is to inject the classical line sampling to the NISS framework so as to substantially improve the efficiency of the algorithm for rare failure event analysis, and two strategies, based on different interpretations of line sampling, are developed. The first strategy is based on the hyperplane approximations, while the second-strategy is derived based on the one-dimensional integrals. Both strategies can be regarded as post-processing of the classical line sampling, while the results show that their resultant NISS estimators have different performance. The third development aims at further substantially improving the efficiency and suitability to highly nonlinear problems of line sampling, for complex structures and systems where one deterministic simulation may take hours. For doing this, the active learning strategy based on Gaussian process regression is embedded into the line sampling procedure for accurately estimating the interaction point for each sample line, with only a small number of deterministic simulations. The above three developments have largely improved the suitability and efficiency of the NISS methods, especially for real-world engineering applications. The efficiency and effectiveness of those developments are clearly interpreted with toy examples and sufficiently demonstrated by real-world test examples in system engineering, civil engineering, and mechanical engineering

    Hydrogeological engineering approaches to investigate and characterize heterogeneous aquifers

    Get PDF
    This dissertation presents a compilation of five stand-alone manuscripts (Chapters 2 through 5 and Appendix A). Chapters 2 through 5 present hydrogeological analysis approaches, while Appendix A is utilized within the dissertation introduction as an example of a non-physically based modeling approach, albeit demonstrated on a non-hydrogeologically based application. Chapter 2 presents an inverse approach to decompose pumping influences from water-level fluctuations observed at a monitoring location. Chapter 3 presents an inferencing approach to identify effective aquifer properties at the interwell scale that can be applied to highly transient datasets. Chapter 4 introduces the use of a Markov-chain model of spatial correlation to an automated geostatistical inverse framework, demonstrating the approach on a 2-D two-stratigraphic-unit synthetic aquifer. Chapter 5 utilizes the inverse framework introduced in Chapter 4 to develop a stochastic analysis approach to identify the most plausible geostatistical model given the available data. The dissertation introduction reconciles these hydrogeological engineering approaches within the context of the current hydrogeological perspective, discussing where these approaches within the often conflicting goals of providing operational decision support based on modeling and advancing the science of hydrogeology beyond its current limitations

    Evolution strategies for robust optimization

    Get PDF
    Real-world (black-box) optimization problems often involve various types of uncertainties and noise emerging in different parts of the optimization problem. When this is not accounted for, optimization may fail or may yield solutions that are optimal in the classical strict notion of optimality, but fail in practice. Robust optimization is the practice of optimization that actively accounts for uncertainties and/or noise. Evolutionary Algorithms form a class of optimization algorithms that use the principle of evolution to find good solutions to optimization problems. Because uncertainty and noise are indispensable parts of nature, this class of optimization algorithms seems to be a logical choice for robust optimization scenarios. This thesis provides a clear definition of the term robust optimization and a comparison and practical guidelines on how Evolution Strategies, a subclass of Evolutionary Algorithms for real-parameter optimization problems, should be adapted for such scenarios.UBL - phd migration 201

    Gradient boosting in automatic machine learning: feature selection and hyperparameter optimization

    Get PDF
    Das Ziel des automatischen maschinellen Lernens (AutoML) ist es, alle Aspekte der Modellwahl in prädiktiver Modellierung zu automatisieren. Diese Arbeit beschäftigt sich mit Gradienten Boosting im Kontext von AutoML mit einem Fokus auf Gradient Tree Boosting und komponentenweisem Boosting. Beide Techniken haben eine gemeinsame Methodik, aber ihre Zielsetzung ist unterschiedlich. Während Gradient Tree Boosting im maschinellen Lernen als leistungsfähiger Vorhersagealgorithmus weit verbreitet ist, wurde komponentenweises Boosting im Rahmen der Modellierung hochdimensionaler Daten entwickelt. Erweiterungen des komponentenweisen Boostings auf multidimensionale Vorhersagefunktionen werden in dieser Arbeit ebenfalls untersucht. Die Herausforderung der Hyperparameteroptimierung wird mit Fokus auf Bayesianische Optimierung und effiziente Stopping-Strategien diskutiert. Ein groß angelegter Benchmark über Hyperparameter verschiedener Lernalgorithmen, zeigt den kritischen Einfluss von Hyperparameter Konfigurationen auf die Qualität der Modelle. Diese Daten können als Grundlage für neue AutoML- und Meta-Lernansätze verwendet werden. Darüber hinaus werden fortgeschrittene Strategien zur Variablenselektion zusammengefasst und eine neue Methode auf Basis von permutierten Variablen vorgestellt. Schließlich wird ein AutoML-Ansatz vorgeschlagen, der auf den Ergebnissen und Best Practices für die Variablenselektion und Hyperparameteroptimierung basiert. Ziel ist es AutoML zu vereinfachen und zu stabilisieren sowie eine hohe Vorhersagegenauigkeit zu gewährleisten. Dieser Ansatz wird mit AutoML-Methoden, die wesentlich komplexere Suchräume und Ensembling Techniken besitzen, verglichen. Vier Softwarepakete für die statistische Programmiersprache R sind Teil dieser Arbeit, die neu entwickelt oder erweitert wurden: mlrMBO: Ein generisches Paket für die Bayesianische Optimierung; autoxgboost: Ein AutoML System, das sich vollständig auf Gradient Tree Boosting fokusiert; compboost: Ein modulares, in C++ geschriebenes Framework für komponentenweises Boosting; gamboostLSS: Ein Framework für komponentenweises Boosting additiver Modelle für Location, Scale und Shape.The goal of automatic machine learning (AutoML) is to automate all aspects of model selection in (supervised) predictive modeling. This thesis deals with gradient boosting techniques in the context of AutoML with a focus on gradient tree boosting and component-wise gradient boosting. Both techniques have a common methodology, but their goal is quite different. While gradient tree boosting is widely used in machine learning as a powerful prediction algorithm, component-wise gradient boosting strength is in feature selection and modeling of high-dimensional data. Extensions of component-wise gradient boosting to multidimensional prediction functions are considered as well. Focusing on Bayesian optimization and efficient early stopping strategies the challenge of hyperparameter optimization for these algorithms is discussed. Difficulty in the optimization of these algorithms is shown by a large scale random search on hyperparameters for machine learning algorithms, that can build the foundation of new AutoML and metalearning approaches. Furthermore, advanced feature selection strategies are summarized and a new method based on shadow features is introduced. Finally, an AutoML approach based on the results and best practices for feature selection and hyperparameter optimization is proposed, with the goal of simplifying and stabilizing AutoML while maintaining high prediction accuracy. This is compared to AutoML approaches using much more complex search spaces and ensembling techniques. Four software packages for the statistical programming language R have been newly developed or extended as a part of this thesis: mlrMBO: A general framework for Bayesian optimization; autoxgboost: An automatic machine learning framework that heavily utilizes gradient tree boosting; compboost: A modular framework for component-wise boosting written in C++; gamboostLSS: A framework for component-wise boosting for generalized additive models for location scale and shape

    Tracking economic growth by evolving expectations via genetic programming: a two-step approach

    Get PDF
    The main objective of this study is to present a two-step approach to generate estimates of economic growth based on agents’ expectations from tendency surveys. First, we design a genetic programming experiment to derive mathematical functional forms that approximate the target variable by combining survey data on expectations about different economic variables. We use evolutionary algorithms to estimate a symbolic regression that links survey-based expectations to a quantitative variable used as a yardstick (economic growth). In a second step, this set of empirically-generated proxies of economic growth are linearly combined to track the evolution of GDP. To evaluate the forecasting performance of the generated estimates of GDP, we use them to assess the impact of the 2008 financial crisis on the accuracy of agents’ expectations about the evolution of the economic activity in 28 countries of the OECD. While in most economies we find an improvement in the capacity of agents’ to anticipate the evolution of GDP after the crisis, predictive accuracy worsens in relation to the period prior to the crisis. The most accurate GDP forecasts are obtained for Sweden, Austria and Finland.Preprin

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences
    • …
    corecore