966 research outputs found

    Congestion Control for Streaming Media

    Get PDF
    The Internet has assumed the role of the underlying communication network for applications such as file transfer, electronic mail, Web browsing and multimedia streaming. Multimedia streaming, in particular, is growing with the growth in power and connectivity of today\u27s computers. These Internet applications have a variety of network service requirements and traffic characteristics, which presents new challenges to the single best-effort service of today\u27s Internet. TCP, the de facto Internet transport protocol, has been successful in satisfying the needs of traditional Internet applications, but fails to satisfy the increasingly popular delay sensitive multimedia applications. Streaming applications often use UDP without a proper congestion avoidance mechanisms, threatening the well-being of the Internet. This dissertation presents an IP router traffic management mechanism, referred to as Crimson, that can be seamlessly deployed in the current Internet to protect well-behaving traffic from misbehaving traffic and support Quality of Service (QoS) requirements of delay sensitive multimedia applications as well as traditional Internet applications. In addition, as a means to enhance Internet support for multimedia streaming, this dissertation report presents design and evaluation of a TCP-Friendly and streaming-friendly transport protocol called the Multimedia Transport Protocol (MTP). Through a simulation study this report shows the Crimson network efficiently handles network congestion and minimizes queuing delay while providing affordable fairness protection from misbehaving flows over a wide range of traffic conditions. In addition, our results show that MTP offers streaming performance comparable to that provided by UDP, while doing so under a TCP-Friendly rate

    Analysis and characterization of wireless smart power meter

    Get PDF
    2014 Summer.No supplementary documents submitted.Includes bibliographical references.Recent increases in the demand for and price of electricity has stimulated interest in monitoring energy usage and improving efficiency. This research work supports development of a low-cost wireless smart power meter capable of measuring RMS Values of voltage and current, real power, and reactive power. The proposed smart power meter features include matching by-device rate of consumption and usage patterns to assist users in monitoring the connected devices. The meter also includes condition monitoring to detect harmonics of interest in the connected circuits which can give vital clues about the defects in machines connected to the circuits. This research work focuses on estimating communicational and computational requirements of the smart power meter and optimization of the system based on the estimated communication and computational requirements. The wireless communication capabilities investigated here are limited to existing wireless technologies in the environment where the power meters will be deployed. Field tests are performed to measure the performance of selected wireless standard in the deployment environment. The test results are used to understand the distance over which the smart power meters can communicate and where it is necessary to utilize repeaters or range extenders to reduce the data loss. Computational requirements included analysis of smart meter front-end sampling of analog data from both current and voltage sensors. Digitized samples stored in a buffer which is further processed by a microcontroller for all the desired results from the power meter. The various stages for processing the data require computational bandwidth and memory dependent on the size of the data stream and calculations involved in the particular stage. A Simulink-based system model of the power meter was developed to report a statistic of computational bandwidth demanded by each stage of data processing. The developed smart meter works in an environment with other wireless devices which include Wi-Fi and Bluetooth. The data loss caused when the smart power meter transmits the data depends on the architecture of the wireless network and also pre-existing wireless technology working in the same environment and while operating in the same frequency band. The best approach in developing a wireless network should reduce the hardware cost of the network and to reduce the data loss in the wireless network. A wireless sensor network is simulated in OMNET++ platform to measure the performance of wireless standard used in smart power meters. Scenarios involving the number of routers in the network and varying throughput between devices are considered to measure the performance of wireless power meters. Supplementary documents provided with the electronic version of this thesis contain program codes which were developed in Simulink and OMNET++

    Pricing Link by Time

    Get PDF
    The combination of loss-based TCP and drop-tail routers often results in full buffers, creating large queueing delays. The challenge with parameter tuning and the drastic consequence of improper tuning have discouraged network administrators from enabling AQM even when routers support it. To address this problem, we propose a novel design principle for AQM, called the pricing-link-by-time (PLT) principle. PLT increases the link price as the backlog stays above a threshold β, and resets the price once the backlog goes below β. We prove that such a system exhibits cyclic behavior that is robust against changes in network environment and protocol parameters. While β approximately controls the level of backlog, the backlog dynamics are invariant for β across a wide range of values. Therefore, β can be chosen to reduce delay without undermining system performance. We validate these analytical results using packet-level simulation

    Wireless Real-Time Communication in Tunnel-like Environments using Wireless Mesh Networks: The WICKPro Protocol

    Get PDF
    En los últimos años, las redes inalámbricas se están utilizando cada vez más en entornos industriales debido a sus ventajas respecto a redes cableadas: menor coste de instalación, soporte de movilidad, instalación en lugares donde los cables pueden ser problemáticos y mayor facilidad de reconfiguración. Estas redes inalámbricas normalmente deben proporcionar comunicación en tiempo real para satisfacer los requerimientos de las aplicaciones. Podemos encontrar ejemplos de comunicación en tiempo real con redes inalámbricas para entornos industriales en el campo de la automatización industrial y en el control de procesos, donde redes inalámbricas de radiofrecuencia han sido utilizadas para posibilitar comunicación en tiempo real con un despliegue sencillo. Asimismo, la industria también está interesada en comunicaciones en tiempo real en entornos subterráneos, puesto que existen diversas actividades que se llevan a cabo en escenarios tales como túneles y minas, incluyendo operaciones de minería, vigilancia, intervención y rescate. Las redes inalámbricas malladas (Wireless Mesh Networks, WMNs) representan una solución prometedora para conseguir comunicaci ón en tiempo real en entornos inalámbricos, dado que proporcionan una red troncal inalámbrica formada por encaminadores (routers) que es utilizada por terminales móviles. Sin embargo, las WMNs también presentan algunos retos: la naturaleza multisalto de estas redes causa interferencias entre flujos e interferencias de un flujo consigo mismo, además de que la propagación inalámbrica sufre shadowing y propagación multicamino. El estándar IEEE 802.11 ha sido ampliamente utilizado en redes WMNs debido a su bajo coste y la operación en bandas frecuenciales sin licencia. El problema es que su protocolo de acceso al medio (Medium Access Control, MAC) no es determinista y que sus comunicaciones sufren los problemas del terminal oculto y expuesto. Esta tesis doctoral se centra en el soporte de comunicaciones en tiempo real en entornos tipo túnel utilizando redes WMNs. Con este objetivo, desarrollamos un protocolo MAC y de nivel de red denominado WIreless Chain networK Protocol (WICKPro) que funciona sobre IEEE 802.11. Más concretamente, en este trabajo diseñamos dos versiones de este protocolo para proporcionar soporte de tráfico de tiempo real firme (Firm Real-Time, FRT) y de tiempo real no estricto (Soft Real-Time, SRT): FRT-WICKPro y SRT-WICKPro. Asimismo, proponemos un algoritmo de hand-off conocido como Double-Threshold Hand-off (DoTHa) para el manejo de la movilidad en SRT-WICKPro WICKPro utiliza un esquema de paso de testigo para solventar las interferencias entre flujos y de un flujo consigo mismo, así como los problemas del terminal oculto y expuesto, dado que este esquema no permite que dos nodos transmitan al mismo tiempo. Esta solución es razonable para redes pequeñas donde el re uso espacial es imposible o limitado. Para tratar la naturaleza no determinista de IEEE 802.11, combinamos el esquema de paso de testigo con una planificación cíclica global. Como es habitual en planificación cíclica, el hiperperiodo es dividido en un conjunto de ciclos secundarios. FRT-WICKPro inicia el paso de testigo de forma síncrona para satisfacer estrictamente dichos ciclos secundarios, mientras que SRT-WICKPro implementa un paso de testigo asíncrono y permite sobrepasar los ciclos secundarios, por lo que desacopla los ciclos secundarios reales de los te_oricos. Finalmente, DoTHa lidia con el shadowing y la propagación multicamino. Para abordar el shadowing, DoTHa permite llevar a cabo el proceso de hand-off en la región conectada y en la región de transición de un enlace, mientras que la propagación multicamino es ignorada para el proceso de hand-off porque la potencia recibida es promediada. Nuestras propuestas fueron validadas en experimentos de laboratorio y de campo, así como en simulación. Como un estudio de caso, llevamos a cabo la teleoperación de un robot móvil en dos entornos confinados: los pasillos de un edificio y el túnel del Somport. El túnel del Somport es un antiguo túnel ferroviario fuera de servicio que conecta España y Francia por los Pirineos Centrales. Aunque los robots autónomos son cada vez más importantes, la tecnología no está suficientemente madura para manejar entornos con alto dinamismo como sistemas de fabricación reconfigurables, o para realizar decisiones de vida o muerte, por ejemplo después de un desastre con contaminación radiactiva. Las aplicaciones que pueden beneficiarse de la teleoperación de robots móviles incluyen la monitorización en tiempo real y el uso de maquinaria robotizada, por ejemplo camiones dumper y máquinas tuneladoras, que podrían ser operadas remotamente para evitar poner en peligro vidas humanas.Industrial applications have been shifting towards wireless networks in recent years because they present several advantages compared with their wired counterparts: lower deployment cost, mobility support, installation in places where cables may be problematic, and easier reconfiguration. These industrial wireless networks usually must provide real-time communication to meet application requirements. Examples of wireless real-time communication for industrial applications can be found in factory automation and process control, where Radio Frequency wireless communication technologies have been employed to support flexible real-time communication with simple deployment. Likewise, industry is also interested in real-time communication in underground environments, since there are several activities that are carried out in scenarios such as tunnels and mines, including mining, surveillance, intervention, and rescue operations. Wireless Mesh Networks (WMNs) are promising enablers to achieve wireless real-time communication because they provide a wireless backbone comprised by dedicated routers that is utilized by mobile terminals. However, WMNs also present several challenges: wireless multi-hopping causes inter-flow and intra-flow interferences, and wireless propagation suffers shadowing and multi-path fading. The IEEE 802.11 standard has been widely used in WMNs due to its low cost and the operation in unlicensed frequency bands. The downside is that its Medium Access Control (MAC) protocol is non-deterministic, and that its communications suffer from the hidden and exposed terminal problems. This PhD thesis focuses on real-time communication in tunnel-like environments by using WMNs. Particularly, we develop a MAC and network protocol on top of the IEEE 802.11 standard to provide real-time capabilities, so-called WIreless Chain networK Protocol (WICKPro). Two WICKPro versions are designed to provide Firm Real-Time (FRT) or Soft Real-Time (SRT) traffic support: FRT-WICKPro and SRT-WICKPro. We also propose a hand-off algorithm dubbed Double-Threshold Hand-off (DoTHa) to manage mobility in SRT-WICKPro. WICKPro employs a token-passing scheme to solve the inter-flow and intra-flow interferences as well as the hidden and exposed terminal problems, since this scheme does not allow two nodes to transmit at the same time. This is a reasonable solution for small-scale networks where spatial reuse is impossible or limited. The non-deterministic nature of IEEE 802.11 is faced by combining the token-passing mechanism with a polling approach based on a global cyclic packet schedule. As usual in cyclic scheduling, the hyper-period is divided into minor cycles. FRT-WICKPro triggers the token synchronously and fulfills strictly minor cycles, whereas SRT-WICKPro carries out asynchronous token-passing and lets minor cycles be overrun, thereby decoupling the theoretic and the actual minor cycles. Finally, DoTHa deals with shadowing and multi-path fading. Shadowing is addressed by providing the opportunity of triggering hand-off in the connected and transitional regions of a link, while multi-path fading is neglected for hand-off purposes by smoothing the received signal power. We tested our proposals in laboratory and field experiments, as well as in simulation. As a case study, we carried out the tele-operation of a mobile robot within two confined environments: the corridors of a building and the Somport tunnel. The Somport tunnel is an old out-of-service railway tunnel that connects Spain and France through the Central Pyrenees. Although autonomous robots are becoming more and more important, technology is not mature enough to manage highly dynamic environments such as reconfigurable manufacturing systems, or to make life-and-death decisions, e.g., after a disaster with radioactivity contamination. Applications that can benefit from mobile robot tele-operation include real-time monitoring and the use of robotized machinery, for example, dumper trucks and tunneling machines, which could be remotely operated to avoid endangering human lives

    An experimental investigation of the data delivery performance of a wireless sensing unit designed for structural health monitoring

    Full text link
    This study explores the reliability of a wireless sensing unit by testing it in a real-world university laboratory environment. The unit employs off-the-shelf products for their key components, while a flexible payload scheme was adopted for radio packet transmission to maximize throughput and minimize latency. The testing consists of two main parts: (1) a series of loopback tests using two off-the-shelf radio components with carrier frequencies of 900 MHz and 2.4 GHz, respectively, and (2) wireless transmission of a shake table response to a periodic swept sine excitation. The performance of the wireless channel is examined in each part of the study. Through this experimental investigation, it is validated that a loopback test may be used as a fast prototyping approach to characterize the complex transmitting environment of a structure in which a wireless monitoring system is installed. Various factors leading to signal attenuation are ranked according to their effects on packet delivery performance. Transmitting range and building materials are among the leading factors causing packet loss (and therefore data loss) in this specific testing environment. The severity of interference from 802.11b wireless systems in close proximity to the wireless sensing unit was investigated. Some preliminary results on the influence of operating rotating machinery and human activities are to wireless sensors were investigated. The results presented herein offer a guideline for applying wireless sensing within real-world structures so that the reliability of the wireless monitoring system is maximized. Due to uncertainties associated with the reliability of wireless communications, statistical analysis is performed on the collected time histories to reveal the underlying patterns associated with data loss. Temporal correlations of data loss were measured and found to be related to the adopted radio. A statistical distribution of the size of consecutive lost data points was further derived from the collected data. Such results have identified the need to further develop: (1) reliable communication protocols to reduce these losses in data and information, and (2) robust data processing and system identification tools to anticipate and explicitly handle any data loss. Copyright © 2007 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60229/1/205_ftp.pd

    Measuring And Improving Internet Video Quality Of Experience

    Get PDF
    Streaming multimedia content over the IP-network is poised to be the dominant Internet traffic for the coming decade, predicted to account for more than 91% of all consumer traffic in the coming years. Streaming multimedia content ranges from Internet television (IPTV), video on demand (VoD), peer-to-peer streaming, and 3D television over IP to name a few. Widespread acceptance, growth, and subscriber retention are contingent upon network providers assuring superior Quality of Experience (QoE) on top of todays Internet. This work presents the first empirical understanding of Internet’s video-QoE capabilities, and tools and protocols to efficiently infer and improve them. To infer video-QoE at arbitrary nodes in the Internet, we design and implement MintMOS: a lightweight, real-time, noreference framework for capturing perceptual quality. We demonstrate that MintMOS’s projections closely match with subjective surveys in accessing perceptual quality. We use MintMOS to characterize Internet video-QoE both at the link level and end-to-end path level. As an input to our study, we use extensive measurements from a large number of Internet paths obtained from various measurement overlays deployed using PlanetLab. Link level degradations of intra– and inter–ISP Internet links are studied to create an empirical understanding of their shortcomings and ways to overcome them. Our studies show that intra–ISP links are often poorly engineered compared to peering links, and that iii degradations are induced due to transient network load imbalance within an ISP. Initial results also indicate that overlay networks could be a promising way to avoid such ISPs in times of degradations. A large number of end-to-end Internet paths are probed and we measure delay, jitter, and loss rates. The measurement data is analyzed offline to identify ways to enable a source to select alternate paths in an overlay network to improve video-QoE, without the need for background monitoring or apriori knowledge of path characteristics. We establish that for any unstructured overlay of N nodes, it is sufficient to reroute key frames using a random subset of k nodes in the overlay, where k is bounded by O(lnN). We analyze various properties of such random subsets to derive simple, scalable, and an efficient path selection strategy that results in a k-fold increase in path options for any source-destination pair; options that consistently outperform Internet path selection. Finally, we design a prototype called source initiated frame restoration (SIFR) that employs random subsets to derive alternate paths and demonstrate its effectiveness in improving Internet video-QoE

    A composable approach to design of newer techniques for large-scale denial-of-service attack attribution

    Get PDF
    Since its early days, the Internet has witnessed not only a phenomenal growth, but also a large number of security attacks, and in recent years, denial-of-service (DoS) attacks have emerged as one of the top threats. The stateless and destination-oriented Internet routing combined with the ability to harness a large number of compromised machines and the relative ease and low costs of launching such attacks has made this a hard problem to address. Additionally, the myriad requirements of scalability, incremental deployment, adequate user privacy protections, and appropriate economic incentives has further complicated the design of DDoS defense mechanisms. While the many research proposals to date have focussed differently on prevention, mitigation, or traceback of DDoS attacks, the lack of a comprehensive approach satisfying the different design criteria for successful attack attribution is indeed disturbing. Our first contribution here has been the design of a composable data model that has helped us represent the various dimensions of the attack attribution problem, particularly the performance attributes of accuracy, effectiveness, speed and overhead, as orthogonal and mutually independent design considerations. We have then designed custom optimizations along each of these dimensions, and have further integrated them into a single composite model, to provide strong performance guarantees. Thus, the proposed model has given us a single framework that can not only address the individual shortcomings of the various known attack attribution techniques, but also provide a more wholesome counter-measure against DDoS attacks. Our second contribution here has been a concrete implementation based on the proposed composable data model, having adopted a graph-theoretic approach to identify and subsequently stitch together individual edge fragments in the Internet graph to reveal the true routing path of any network data packet. The proposed approach has been analyzed through theoretical and experimental evaluation across multiple metrics, including scalability, incremental deployment, speed and efficiency of the distributed algorithm, and finally the total overhead associated with its deployment. We have thereby shown that it is realistically feasible to provide strong performance and scalability guarantees for Internet-wide attack attribution. Our third contribution here has further advanced the state of the art by directly identifying individual path fragments in the Internet graph, having adopted a distributed divide-and-conquer approach employing simple recurrence relations as individual building blocks. A detailed analysis of the proposed approach on real-life Internet topologies with respect to network storage and traffic overhead, has provided a more realistic characterization. Thus, not only does the proposed approach lend well for simplified operations at scale but can also provide robust network-wide performance and security guarantees for Internet-wide attack attribution. Our final contribution here has introduced the notion of anonymity in the overall attack attribution process to significantly broaden its scope. The highly invasive nature of wide-spread data gathering for network traceback continues to violate one of the key principles of Internet use today - the ability to stay anonymous and operate freely without retribution. In this regard, we have successfully reconciled these mutually divergent requirements to make it not only economically feasible and politically viable but also socially acceptable. This work opens up several directions for future research - analysis of existing attack attribution techniques to identify further scope for improvements, incorporation of newer attributes into the design framework of the composable data model abstraction, and finally design of newer attack attribution techniques that comprehensively integrate the various attack prevention, mitigation and traceback techniques in an efficient manner

    Techniques d'ingénierie de trafic dynamique pour l'internet

    Get PDF
    Network convergence and new applications running on end-hosts result in increasingly variable and unpredictable traffic patterns. By providing origin-destination pairs with several possible paths, Dynamic Load-Balancing (DLB) has proved itself an excellent tool to face this uncertainty. The objective in DLB is to distribute traffic among these paths in real-time so that a certain objective function is optimized. In these dynamic schemes, paths are established a priori and the amount of traffic sent through each of them depends on the current traffic demand and network condition. In this thesis we study and propose various DLB mechanisms, differing in two important aspects. The first difference resides in the assumption, or not, that resources are reserved for each path. The second lies on the objective function, which clearly dictates the performance obtained from the network. However, a performance benchmarking of the possible choices has not been carried out so far. In this sense, for the case in which no reservations are performed, we study and compare several objective functions, including a proposal of ours. We will also propose and study a new distributed algorithm to attain the optimum of these objective functions. Its advantage with respect to previous proposals is its complete self-configuration (i. E. Convergence is guaranteed without any parametrization). Finally, we present the first complete comparative study between DLB and Robust Routing (a fixed routing configuration for all possible traffic demands). In particular, we analyze which scheme is more convenient in each given situation, and highlight some of their respective shortcomings and virtues.Avec la multiplication des services dans un même réseau et les diversités des applications utilisées par les usagers finaux, le trafic transporté est devenu très complexe et dynamique. Le Partage de la Charge Dynamique (PCD) constitue une alternative intéressante pour résoudre cette problématique. Si une paire Source-Destination est connectée par plusieurs chemins, le problème est le suivant : comment distribuer le trafic parmi ces chemins de telle façon qu’une fonction objective soit optimisé. Dans ce cas les chemins sont fixés a priori et la quantité de trafic acheminée sur chaque route est déterminée dynamiquement en fonction de la demande de trafic et de la situation actuelle du réseau. Dans cette thèse nous étudions puis nous proposons plusieurs mécanismes de PCD. Tout d'abord, nous distinguons deux types d’architecture : celles dans lesquelles les ressources sont réservées pour chaque chemin, et celles pour lesquelles aucune réservation n'est effectuée. La simplification faite dans le premier type d’architecture nous permet de proposer l'utilisation d'un nouveau mécanisme pour gérer les chemins. Partant de ce mécanisme, nous définissons un nouvel algorithme de PCD. Concernant la deuxième architecture, nous étudions et comparons plusieurs fonctions objectives. À partir de notre étude, nous proposons un nouvel algorithme distribué permettant d’atteindre l'optimum de ces fonctions objectives. La principale caractéristique de notre algorithme, et son avantage par rapport aux propositions antérieures, est sa capacité d'auto-configuration, dans la mesure où la convergence de l'algorithme est garantie sans aucun besoin de réglage préalable de ses paramètres
    • …
    corecore