686 research outputs found

    Numerical analysis on Buried pipes protected by combination of geocell reinforcement and rubber-soil mixture

    Get PDF
    A numerical simulation of laboratory model tests was carried out to develop an understanding of the behaviour of pipes in a trench prepared with 3-Dimensional reinforced (namely "geocell-reinforced" in the present study) sand and rubber-soil mixtures, under repeated loadings. The study reports overall performance of buried pipes in different conditions of pipe-trench installations and the influence of pipe stiffness on backfill settlements, stress distribution in the trench depth and stress distribution along the pipe's longitudinal axis. Good agreements between the numerical results and experimental results were observed. The results demonstrate that combined use of the geocell layer and rubber-soil mixture can reduce soil surface settlement and pipe deflection and eventually provide a secure condition for buried pipe even under strong repeated loads

    Numerical analysis on Buried pipes protected by combination of geocell reinforcement and rubber-soil mixture

    Get PDF
    A numerical simulation of laboratory model tests was carried out to develop an understanding of the behaviour of pipes in a trench prepared with 3-Dimensional reinforced (namely "geocell-reinforced" in the present study) sand and rubber-soil mixtures, under repeated loadings. The study reports overall performance of buried pipes in different conditions of pipe-trench installations and the influence of pipe stiffness on backfill settlements, stress distribution in the trench depth and stress distribution along the pipe's longitudinal axis. Good agreements between the numerical results and experimental results were observed. The results demonstrate that combined use of the geocell layer and rubber-soil mixture can reduce soil surface settlement and pipe deflection and eventually provide a secure condition for buried pipe even under strong repeated loads

    Experimental Evaluation of Geocell and EPS Geofoam as Means of Protecting Pipes at the Bottom of Repeatedly Loaded Trenches

    Get PDF
    © 2020 American Society of Civil Engineers. With growing populations and continuing urban development, embedding pipes in the ground that are then overrun by traffic is inevitable. This paper describes full-scale prototype tests on high-density polyethylene (HDPE) flexible pipes (of 250 mm diameter), buried at shallow depth, under simulated traffic loading. The paper studies the effect of surface load diameter (0.6×, 0.8×, and 1× pipe diameter) and the amplitude of repeated load (400 or 800 kPa) on pipe behavior. The effects of expanded polystyrene (EPS) geofoam blocks of various densities and also of geocells as a three-dimensional (3D) reinforcement in reducing the pressure transferred to the pipe, the deformation of the pipe, and the surface settlement of the backfill were investigated. The results show that, with an increase in loading surface diameter, the pipe's vertical diametral strain, the pressure transferred to the pipe, and the surface settlement grow significantly, irrespective of applied pressure. Using an EPS block over the pipe increases the soil settlement but reduces transferred pressure onto the pipe and, consequentially, results in lower pipe deformations. The increase in density of an EPS block helps improve response but was still found to be insufficient to prevent increase in surface deflections. The use of geocell reinforcement beneath the loading surface not only reduces the pressure transferred to the pipe and decreases its deformation but also significantly negates the tendency of the EPS block to increase the soil surface settlement. Thus, a geocell reinforcement layer placed over two EPS geofoam blocks (with total thickness 0.3× and width 1.5× the pipe diameter) all above a pipe buried at a depth of twice the pipe diameter, was found to deliver an acceptable, stable response. By these means, the vertical pipe strain, transferred pressure over the pipe, and soil surface settlement were reduced, respectively, by 0.45, 0.37, and 0.53× those obtained for the comparable unmodified buried pipe installation and are within allowable limits

    Experimental and Numerical Investigations to Assess the Performance of a Buried Pipe Subjected to Traffic Load / Non-Treated and Cement-Treated Trench

    Get PDF
    In this research, the performance of buried flexible pipe subjected to traffic load was investigated. First, a numerical parametric study was performed to study the influence of eight factors on pipe-soil behaviour under surface load using ABAQUS. Then, the impact of surface pressure, burial depth, number of cycles and cement stabilization on model response was investigated using laboratory experiments and numerical simulations. Equations were developed using Linear Regression Model and Artificial Neural Network using MATLAB

    Combining EPS geofoam with geocell to reduce buried pipe loads and trench surface rutting

    Get PDF
    © 2020 Elsevier Ltd This paper reports full scale experiments, under simulated heavy traffic, of geocell and EPS (expanded polystyrene) geofoam block inclusions to mitigate the pressure on, and deformation of, shallow buried, high density polyethylene (HDPE) flexible pipes while limiting surface settlement of the backfilled trench. Geocell of two pocket sizes and EPS of different widths and thickness are used. Soil surface settlement, pipe deformation and transferred pressure onto the pipe are evaluated under repeated loading. The results show that using EPS may sometimes lead to larger surface settlements but can alleviate pressure onto the pipe and, consequentially, result in lower pipe deformations. This benefit is enhanced by the use of geocell reinforcement, which not only significantly opposes any EPS-induced increase in soil surface settlement, but further reduces the pressure on the pipe and its deformation to within allowable limits. For example, by using EPS geofoam with width 0.3 times, and thickness 1.5 times, pipe diameter simultaneously with geocell reinforcement with a pocket size 110 × 110 mm2 soil surface settlement, pipe deformation and transferred pressure around a shallow pipe were respectively, 0.60, 0.52 and 0.46 times those obtained in the fully unreinforced buried pipe system. This would represent a desirable and allowable arrangement

    Advanced Underground Space Technology

    Get PDF
    The recent development of underground space technology makes underground space a potential and feasible solution to climate change, energy shortages, the growing population, and the demands on urban space. Advances in material science, information technology, and computer science incorporating traditional geotechnical engineering have been extensively applied to sustainable and resilient underground space applications. The aim of this Special Issue, entitled “Advanced Underground Space Technology”, is to gather original fundamental and applied research related to the design, construction, and maintenance of underground space

    Buildings and Structures under Extreme Loads II

    Get PDF
    Exceptional loads on buildings and structures are known to take origin and manifest from different causes, like natural hazards and possible high-strain dynamic effects, human-made attacks and impact issues for load-bearing components, possible accidents, and even unfavorable/extreme operational conditions. All these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated analysis methods and performance indicators are required for the design and maintenance under the expected lifetime. Typical issues and challenges can find huge efforts and clarification in research studies, which are able to address with experiments and/or numerical analyses the expected performance and capacity of a given structural system, with respect to demands. Accordingly, especially for existing structures or strategic buildings, the need for retrofit or mitigation of adverse effects suggests the definition of optimal and safe use of innovative materials, techniques, and procedures. This Special Issue follows the first successful edition and confirms the need of continuous research efforts in support of building design under extreme loads, with a list of original research papers focused on various key aspects of structural performance assessment for buildings and systems under exceptional design actions and operational conditions

    Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields

    Get PDF
    Innovations in Road, Railway and Airfield Bearing Capacity – Volume 3 comprises the third part of contributions to the 11th International Conference on Bearing Capacity of Roads, Railways and Airfields (2022). In anticipation of the event, it unveils state-of-the-art information and research on the latest policies, traffic loading measurements, in-situ measurements and condition surveys, functional testing, deflection measurement evaluation, structural performance prediction for pavements and tracks, new construction and rehabilitation design systems, frost affected areas, drainage and environmental effects, reinforcement, traditional and recycled materials, full scale testing and on case histories of road, railways and airfields. This edited work is intended for a global audience of road, railway and airfield engineers, researchers and consultants, as well as building and maintenance companies looking to further upgrade their practices in the field

    Static and Dynamic Analysis of Geogrid Reinforced Unpaved Road

    Get PDF
    With Emphasis on greater connectivity, there is a need of unpaved road to achieve economy. In this study a large scale laboratory plate load test was conducted on a circular footing resting on with and without geogrid reinforced bed. Sand and granular materials are used as subgrade and subbase layer. The experiments were conducted for both static and dynamic loading .Test result reveals that with the addition of geogrid the settlement has reduced up to 40-60% as compared to unreinforced section. The experimental static results have validated with numerical modelling using both Finite element method and Finite difference method (Plaxis2D and FLAC2D) and dynamic results have validated by using empirically by Giroud and Han‟s equation. Based on the experimental and numerical studies, predictive models are proposed using two recently developed artificial intelligent techniques, Genetic Programming (GP) and Multiple adoptive Regression Spline (MARS)

    Advanced Theoretical and Computational Methods for Complex Materials and Structures

    Get PDF
    The broad use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering has gained increased attention from scientists and engineers for the development of even more refined approaches and investigation of their mechanical behavior. It is well known that composite materials are able to provide higher values of strength stiffness, and thermal properties, together with conferring reduced weight, which can affect the mechanical behavior of beams, plates, and shells, in terms of static response, vibrations, and buckling loads. At the same time, enhanced structures made of composite materials can feature internal length scales and non-local behaviors, with great sensitivity to different staking sequences, ply orientations, agglomeration of nanoparticles, volume fractions of constituents, and porosity levels, among others. In addition to fiber-reinforced composites and laminates, increased attention has been paid in literature to the study of innovative components such as functionally graded materials (FGMs), carbon nanotubes (CNTs), graphene nanoplatelets, and smart constituents. Some examples of smart applications involve large stroke smart actuators, piezoelectric sensors, shape memory alloys, magnetostrictive and electrostrictive materials, as well as auxetic components and angle-tow laminates. These constituents can be included in the lamination schemes of smart structures to control and monitor the vibrational behavior or the static deflection of several composites. The development of advanced theoretical and computational models for composite materials and structures is a subject of active research and this is explored here for different complex systems, including their static, dynamic, and buckling responses; fracture mechanics at different scales; the adhesion, cohesion, and delamination of materials and interfaces
    corecore