1,176 research outputs found

    Translational Oncogenomics and Human Cancer Interactome Networks

    Get PDF
    An overview of translational, human oncogenomics, transcriptomics and cancer interactomic networks is presented together with basic concepts and potential, new applications to Oncology and Integrative Cancer Biology. Novel translational oncogenomics research is rapidly expanding through the application of advanced technology, research findings and computational tools/models to both pharmaceutical and clinical problems. A self-contained presentation is adopted that covers both fundamental concepts and the most recent biomedical, as well as clinical, applications. Sample analyses in recent clinical studies have shown that gene expression data can be employed to distinguish between tumor types as well as to predict outcomes. Potentially important applications of such results are individualized human cancer therapies or, in general, ‘personalized medicine’. Several cancer detection techniques are currently under development both in the direction of improved detection sensitivity and increased time resolution of cellular events, with the limits of single molecule detection and picosecond time resolution already reached. The urgency for the complete mapping of a human cancer interactome with the help of such novel, high-efficiency / low-cost and ultra-sensitive techniques is also pointed out

    MIClique: An Algorithm to Identify Differentially Coexpressed Disease Gene Subset from Microarray Data

    Get PDF
    Computational analysis of microarray data has provided an effective way to identify disease-related genes. Traditional disease gene selection methods from microarray data such as statistical test always focus on differentially expressed genes in different samples by individual gene prioritization. These traditional methods might miss differentially coexpressed (DCE) gene subsets because they ignore the interaction between genes. In this paper, MIClique algorithm is proposed to identify DEC gene subsets based on mutual information and clique analysis. Mutual information is used to measure the coexpression relationship between each pair of genes in two different kinds of samples. Clique analysis is a commonly used method in biological network, which generally represents biological module of similar function. By applying the MIClique algorithm to real gene expression data, some DEC gene subsets which correlated under one experimental condition but uncorrelated under another condition are detected from the graph of colon dataset and leukemia dataset

    Computational Intelligence Based Classifier Fusion Models for Biomedical Classification Applications

    Get PDF
    The generalization abilities of machine learning algorithms often depend on the algorithms’ initialization, parameter settings, training sets, or feature selections. For instance, SVM classifier performance largely relies on whether the selected kernel functions are suitable for real application data. To enhance the performance of individual classifiers, this dissertation proposes classifier fusion models using computational intelligence knowledge to combine different classifiers. The first fusion model called T1FFSVM combines multiple SVM classifiers through constructing a fuzzy logic system. T1FFSVM can be improved by tuning the fuzzy membership functions of linguistic variables using genetic algorithms. The improved model is called GFFSVM. To better handle uncertainties existing in fuzzy MFs and in classification data, T1FFSVM can also be improved by applying type-2 fuzzy logic to construct a type-2 fuzzy classifier fusion model (T2FFSVM). T1FFSVM, GFFSVM, and T2FFSVM use accuracy as a classifier performance measure. AUC (the area under an ROC curve) is proved to be a better classifier performance metric. As a comparison study, AUC-based classifier fusion models are also proposed in the dissertation. The experiments on biomedical datasets demonstrate promising performance of the proposed classifier fusion models comparing with the individual composing classifiers. The proposed classifier fusion models also demonstrate better performance than many existing classifier fusion methods. The dissertation also studies one interesting phenomena in biology domain using machine learning and classifier fusion methods. That is, how protein structures and sequences are related each other. The experiments show that protein segments with similar structures also share similar sequences, which add new insights into the existing knowledge on the relation between protein sequences and structures: similar sequences share high structure similarity, but similar structures may not share high sequence similarity

    Classification of microarray gene expression cancer data by using artificial intelligence methods

    Get PDF
    Günümüzde bilgisayar teknolojilerinin gelişmesi ile birçok alanda yapılan çalışmaları etkilemiştir. Moleküler biyoloji ve bilgisayar teknolojilerinde meydana gelen gelişmeler biyoinformatik adlı bilimi ortaya çıkarmıştır. Biyoinformatik alanında meydana gelen hızlı gelişmeler, bu alanda çözülmeyi bekleyen birçok probleme çözüm olma yolunda büyük katkılar sağlamıştır. DNA mikroarray gen ekspresyonlarının sınıflandırılması da bu problemlerden birisidir. DNA mikroarray çalışmaları, biyoinformatik alanında kullanılan bir teknolojidir. DNA mikroarray veri analizi, kanser gibi genlerle alakalı hastalıkların teşhisinde çok etkin bir rol oynamaktadır. Hastalık türüne bağlı gen ifadeleri belirlenerek, herhangi bir bireyin hastalıklı gene sahip olup olmadığı büyük bir başarı oranı ile tespit edilebilir. Bireyin sağlıklı olup olmadığının tespiti için, mikroarray gen ekspresyonları üzerinde yüksek performanslı sınıflandırma tekniklerinin kullanılması büyük öneme sahiptir. DNA mikroarray’lerini sınıflandırmak için birçok yöntem bulunmaktadır. Destek Vektör Makinaları, Naive Bayes, k-En yakın Komşu, Karar Ağaçları gibi birçok istatistiksel yöntemler yaygın olarak kullanlmaktadır. Fakat bu yöntemler tek başına kullanıldığında, mikroarray verilerini sınıflandırmada her zaman yüksek başarı oranları vermemektedir. Bu yüzden mikroarray verilerini sınıflandırmada yüksek başarı oranları elde etmek için yapay zekâ tabanlı yöntemlerin de kullanılması yapılan çalışmalarda görülmektedir. Bu çalışmada, bu istatistiksel yöntemlere ek olarak yapay zekâ tabanlı ANFIS gibi bir yöntemi kullanarak daha yüksek başarı oranları elde etmek amaçlanmıştır. İstatistiksel sınıflandırma yöntemleri olarak K-En Yakın Komşuluk, Naive Bayes ve Destek Vektör Makineleri kullanılmıştır. Burada Göğüs ve Merkezi Sinir Sistemi kanseri olmak üzere iki farklı kanser veri seti üzerinde çalışmalar yapılmıştır. Sonuçlardan elde edilen bilgilere göre, genel olarak yapay zekâ tabanlı ANFIS tekniğinin, istatistiksel yöntemlere göre daha başarılı olduğu tespit edilmiştir

    Interpretability-oriented data-driven modelling of bladder cancer via computational intelligence

    Get PDF

    Network-based stratification of tumor mutations.

    Get PDF
    Many forms of cancer have multiple subtypes with different causes and clinical outcomes. Somatic tumor genome sequences provide a rich new source of data for uncovering these subtypes but have proven difficult to compare, as two tumors rarely share the same mutations. Here we introduce network-based stratification (NBS), a method to integrate somatic tumor genomes with gene networks. This approach allows for stratification of cancer into informative subtypes by clustering together patients with mutations in similar network regions. We demonstrate NBS in ovarian, uterine and lung cancer cohorts from The Cancer Genome Atlas. For each tissue, NBS identifies subtypes that are predictive of clinical outcomes such as patient survival, response to therapy or tumor histology. We identify network regions characteristic of each subtype and show how mutation-derived subtypes can be used to train an mRNA expression signature, which provides similar information in the absence of DNA sequence

    Fuzzy-Granular Based Data Mining for Effective Decision Support in Biomedical Applications

    Get PDF
    Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery and data mining systems are highly needed to help humans to understand the inherent mechanism of diseases. For biomedical classification problems, typically it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, is proposed to build such a DSS for binary classification problems in the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide strong decision support on disease diagnoses due to their easy interpretability. This dissertation also proposes a fuzzy-granular method to select informative and discriminative genes from huge microarray gene expression data. With fuzzy granulation, information loss in the process of gene selection is decreased. As a result, more informative genes for cancer classification are selected and more accurate classifiers can be modeled. Empirical studies show that the proposed method is more accurate than traditional algorithms for cancer classification. And hence we expect that genes being selected can be more helpful for further biological studies

    Knowledge Management Approaches for predicting Biomarker and Assessing its Impact on Clinical Trials

    Get PDF
    The recent success of companion diagnostics along with the increasing regulatory pressure for better identification of the target population has created an unprecedented incentive for the drug discovery companies to invest into novel strategies for stratified biomarker discovery. Catching with this trend, trials with stratified biomarker in drug development have quadrupled in the last decade but represent a small part of all Interventional trials reflecting multiple co-developmental challenges of therapeutic compounds and companion diagnostics. To overcome the challenge, varied knowledge management and system biology approaches are adopted in the clinics to analyze/interpret an ever increasing collection of OMICS data. By semi-automatic screening of more than 150,000 trials, we filtered trials with stratified biomarker to analyse their therapeutic focus, major drivers and elucidated the impact of stratified biomarker programs on trial duration and completion. The analysis clearly shows that cancer is the major focus for trials with stratified biomarker. But targeted therapies in cancer require more accurate stratification of patient population. This can be augmented by a fresh approach of selecting a new class of biomolecules i.e. miRNA as candidate stratification biomarker. miRNA plays an important role in tumorgenesis in regulating expression of oncogenes and tumor suppressors; thus affecting cell proliferation, differentiation, apoptosis, invasion, angiogenesis. miRNAs are potential biomarkers in different cancer. However, the relationship between response of cancer patients towards targeted therapy and resulting modifications of the miRNA transcriptome in pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have created an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. We present a novel SMARTmiR algorithm to predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer. The application of an optimised and fully automated version of the algorithm has the potential to be used as clinical decision support tool. Moreover this research will also provide a comprehensive and valuable knowledge map demonstrating functional bimolecular interactions in colorectal cancer to scientific community. This research also detected seven miRNA i.e. hsa-miR-145, has-miR-27a, has- miR-155, hsa-miR-182, hsa-miR-15a, hsa-miR-96 and hsa-miR-106a as top stratified biomarker candidate for cetuximab therapy in CRC which were not reported previously. Finally a prospective plan on future scenario of biomarker research in cancer drug development has been drawn focusing to reduce the risk of most expensive phase III drug failures
    corecore