11,440 research outputs found

    Causative role of left aIPS in coding shared goals during human-avatar complementary joint actions

    Get PDF
    Successful motor interactions require agents to anticipate what a partner is doing in order to predictively adjust their own movements. Although the neural underpinnings of the ability to predict others' action goals have been well explored during passive action observation, no study has yet clarified any critical neural substrate supporting interpersonal coordination during active, non-imitative (complementary) interactions. Here, we combine non-invasive inhibitory brain stimulation (continuous Theta Burst Stimulation) with a novel human-avatar interaction task to investigate a causal role for higher-order motor cortical regions in supporting the ability to predict and adapt to others' actions. We demonstrate that inhibition of left anterior intraparietal sulcus (aIPS), but not ventral premotor cortex, selectively impaired individuals' performance during complementary interactions. Thus, in addition to coding observed and executed action goals, aIPS is crucial in coding 'shared goals', that is, integrating predictions about one's and others' complementary actions

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    On the use of natural user interfaces in physical rehabilitation: a web-based application for patients with hip prosthesis

    Get PDF
    This study aims to develop a telemedicine platform for self-motor rehabilitation and remote monitoring by health professionals, in order to enhance recovery in patients after hip replacement. The implementation of such a technology is justified by medical (improvement of the recovery process by the possibility to perform rehabilitation exercises more frequently), economic (reduction of the number of medical appointments and the time patients spend at the hospital), mobility (diminution of the transportation to and from the hospital) and ethics (healthcare democratization and increased empowerment of the patient) purposes. The Kinect camera is used as a Natural User Interface to capture the physical exercises performed at home by the patients. The quality of the movement is evaluated in real-time by an assessment module implemented according to a Hidden-Markov Model approach. The results show a high accuracy in the evaluation of the movements (92% of correct classification). Finally, the usability of the platform is tested through the System Usability Scale (SUS). The overall SUS score is 81 out of 100, which suggests a good usability of the Web application. Further work will focus on the development of additional functionalities and an evaluation of the impact of the platform on the recovery process

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Human Pose Detection for Robotic-Assisted and Rehabilitation Environments

    Get PDF
    Assistance and rehabilitation robotic platforms must have precise sensory systems for human–robot interaction. Therefore, human pose estimation is a current topic of research, especially for the safety of human–robot collaboration and the evaluation of human biomarkers. Within this field of research, the evaluation of the low-cost marker-less human pose estimators of OpenPose and Detectron 2 has received much attention for their diversity of applications, such as surveillance, sports, videogames, and assessment in human motor rehabilitation. This work aimed to evaluate and compare the angles in the elbow and shoulder joints estimated by OpenPose and Detectron 2 during four typical upper-limb rehabilitation exercises: elbow side flexion, elbow flexion, shoulder extension, and shoulder abduction. A setup of two Kinect 2 RGBD cameras was used to obtain the ground truth of the joint and skeleton estimations during the different exercises. Finally, we provided a numerical comparison (RMSE and MAE) among the angle measurements obtained with OpenPose, Detectron 2, and the ground truth. The results showed how OpenPose outperforms Detectron 2 in these types of applications.Óscar G. Hernández holds a grant from the Spanish Fundación Carolina, the University of Alicante, and the National Autonomous University of Honduras

    A Kinect-Based Interactive System for Home-Assisted Active Aging

    Get PDF
    Virtually every country in the world is facing an unprecedented challenge: society is aging.Assistive technologies are expected to play a key role in promoting healthy lifestyles in the elderly.This paper presents a Kinect-based interactive system for home-assisted healthy aging, which guides,supervises, and corrects older users when they perform scheduled physical exercises. Interactionstake place in gamified environments with augmented reality. Many graphical user interface elementsand workflows have been designed considering the sensory, physical and technological shortcomingsof the elderly, adapting accordingly the interaction methods, graphics, exercises, tolerance margins,physical goals, and scoring criteria. Experiments involved 57 participants aged between 65 and 80who performed the same physical routine six times during 15 days. After each session, participantscompleted a usability survey. Results provided significant evidence that support (1) the effectivenessof the system in assisting older users of different age ranges, (2) the accuracy of the system inmeasuring progress in physical achievement of the elderly, and (3) a progressive acceptance ofthe system as it was used. As a main conclusion, the experiments verified that despite their poortechnological skills, older people can adapt positively to the use of an interactive assistance tool foractive aging if they experience clear benefits

    Pointing as an Instrumental Gesture : Gaze Representation Through Indication

    Get PDF
    The research of the first author was supported by a Fulbright Visiting Scholar Fellowship and developed in 2012 during a period of research visit at the University of Memphis.Peer reviewedPublisher PD

    Towards a complete multiple-mechanism account of predictive language processing [Commentary on Pickering & Garrod]

    Get PDF
    Although we agree with Pickering & Garrod (P&G) that prediction-by-simulation and prediction-by-association are important mechanisms of anticipatory language processing, this commentary suggests that they: (1) overlook other potential mechanisms that might underlie prediction in language processing, (2) overestimate the importance of prediction-by-association in early childhood, and (3) underestimate the complexity and significance of several factors that might mediate prediction during language processing
    • …
    corecore