104,703 research outputs found

    Succesful teaching of experimental vibration research

    Get PDF
    For more than 20 years, master students have been offered a practical training on experimental vibration research by the Structural Dynamics & Acoustics Section of the University of Twente. The basic theoretical knowledge, necessary to attend this practical training, is provided for the Master part of their study and it consists of a series of lectures on advanced dynamics, measurement techniques and the concept of modal analysis. The practical training consists of performing vibration experiments on a well defined simple structure. Use is made of a digital signal processing (DSP) Siglab system, together with ME'scope as analysis tool. In order to guarantee maximal transfer of knowledge toward the participants, small groups consisting of two students are formed. These groups are supervised by an experienced tutor, who intensively monitors the progress of the practical training. It lasts one day and the students have to write down their findings in a report. In order to attend the practical training in an efficient way, students have to study the theoretical basics of experimental vibration research in advance. In order to achieve an optimal preparation to the practical, a ‘virtual’ vibration measurement based on Labview is developed for the next academic year. Students will thus be able to run this experiment remotely from behind their PC by activating a real-life test case placed in the laboratory. In this paper the content and execution of the practical training is described. The experience of the authors is that the vast amount of interesting educational ingredients contributes to a profound understanding of both theoretical and experimental vibration research for Mechanical Engineering students

    XinuPi3: Teaching Multicore Concepts Using Embedded Xinu

    Get PDF
    As computer platforms become more advanced, the need to teach advanced computing concepts grows accordingly. This paper addresses one such need by presenting XinuPi3, a port of the lightweight instructional operating system Embedded Xinu to the Raspberry Pi 3. The Raspberry Pi 3 improves upon previous generations of inexpensive, credit card-sized computers by including a quad-core, ARM-based processor, opening the door for educators to demonstrate essential aspects of modern computing like inter-core communication and genuine concurrency. Embedded Xinu has proven to be an effective teaching tool for demonstrating low-level concepts on single-core platforms, and it is currently used to teach a range of systems courses at multiple universities. As of this writing, no other bare metal educational operating system supports multicore computing. XinuPi3 provides a suitable learning environment for beginners on genuinely concurrent hardware. This paper provides an overview of the key features of the XinuPi3 system, as well as the novel embedded system education experiences it makes possible

    A Web-Based Distributed Virtual Educational Laboratory

    Get PDF
    Evolution and cost of measurement equipment, continuous training, and distance learning make it difficult to provide a complete set of updated workbenches to every student. For a preliminary familiarization and experimentation with instrumentation and measurement procedures, the use of virtual equipment is often considered more than sufficient from the didactic point of view, while the hands-on approach with real instrumentation and measurement systems still remains necessary to complete and refine the student's practical expertise. Creation and distribution of workbenches in networked computer laboratories therefore becomes attractive and convenient. This paper describes specification and design of a geographically distributed system based on commercially standard components

    An integrated approach to rotorcraft human factors research

    Get PDF
    As the potential of civil and military helicopters has increased, more complex and demanding missions in increasingly hostile environments have been required. Users, designers, and manufacturers have an urgent need for information about human behavior and function to create systems that take advantage of human capabilities, without overloading them. Because there is a large gap between what is known about human behavior and the information needed to predict pilot workload and performance in the complex missions projected for pilots of advanced helicopters, Army and NASA scientists are actively engaged in Human Factors Research at Ames. The research ranges from laboratory experiments to computational modeling, simulation evaluation, and inflight testing. Information obtained in highly controlled but simpler environments generates predictions which can be tested in more realistic situations. These results are used, in turn, to refine theoretical models, provide the focus for subsequent research, and ensure operational relevance, while maintaining predictive advantages. The advantages and disadvantages of each type of research are described along with examples of experimental results

    A system for the simulation and evaluation of satellite communication networks

    Get PDF
    With the emergence of a new era in satellite communications brought about by NASA's thrust into the Ka band with multibeam and onboard processing technologies, new and innovative techniques for evaluating these concepts and systems are required. To this end, NASA, in conjunction with its extensive program for advanced communications technology development, has undertaken to develop a concept for the simulation and evaluation of a complete communications network. Incorporated in this network will be proof of concept models of the latest technologies proposed for future satellite communications systems. These include low noise receivers, matrix switches, baseband processors, and solid state and tube type high power amplifiers. To accomplish this, numerous supporting technologies must be added to those aforementioned proof of concept models. These include controllers for synchronization, order wire, and resource allocation, gain compensation, signal leveling, power augmentation, and rain fade and range delay simulation. Taken together, these will be assembled to comprise a system capable of addressing numerous design and performance questions. The simulation and evaluation system as planned will be modular in design and implementation, capable of modification and updating to track and evaluate a continuum emerging concepts and technologies

    High-Tech Tools for Teaching Physics: the Physics Education Technology Project

    Get PDF
    This article appeared in the Journal of Online Teaching and Learning September 15, 2006.This paper introduces a new suite of computer simulations from the Physics Education Technology (PhET) project, identifies features of these educational tools, and demonstrates their utility. We compare the use of PhET simulations to the use of more traditional educational resources in lecture, laboratory, recitation and informal settings of introductory college physics. In each case we demonstrate that simulations are as productive, or more productive, for developing student conceptual understanding as real equipment, reading resources, or chalk-talk lectures. We further identify six key characteristic features of these simulations that begin to delineate why these are productive tools. The simulations: support an interactive approach, employ dynamic feedback, follow a constructivist approach, provide a creative workplace, make explicit otherwise inaccessible models or phenomena, and constrain students productively

    Brain-wave measures of workload in advanced cockpits: The transition of technology from laboratory to cockpit simulator, phase 2

    Get PDF
    The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS

    Hazard alerting and situational awareness in advanced air transport cockpits

    Get PDF
    Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized

    Automated system for integration and display of physiological response data

    Get PDF
    The system analysis approach was applied in a study of physiological systems in both 1-g and weightlessness, for short and long term experiments. A whole body, algorithm developed as the first step in the construction of a total body simulation system is described and an advanced biomedical computer system concept including interactive display/command consoles is discussed. The documentation of the design specifications, design and development studies, and user's instructions (which include program listings) for these delivered end-terms; the reports on the results of many research and feasibility studies; and many subcontract reports are cited in the bibliography
    corecore