684 research outputs found

    2b-RAD genotyping for population genomic studies of Chagas disease vectors: Rhodnius ecuadoriensis in Ecuador

    Get PDF
    Background: Rhodnius ecuadoriensis is the main triatomine vector of Chagas disease, American trypanosomiasis, in Southern Ecuador and Northern Peru. Genomic approaches and next generation sequencing technologies have become powerful tools for investigating population diversity and structure which is a key consideration for vector control. Here we assess the effectiveness of three different 2b restriction site-associated DNA (2b-RAD) genotyping strategies in R. ecuadoriensis to provide sufficient genomic resolution to tease apart microevolutionary processes and undertake some pilot population genomic analyses. Methodology/Principal findings: The 2b-RAD protocol was carried out in-house at a non-specialized laboratory using 20 R. ecuadoriensis adults collected from the central coast and southern Andean region of Ecuador, from June 2006 to July 2013. 2b-RAD sequencing data was performed on an Illumina MiSeq instrument and analyzed with the STACKS de novo pipeline for loci assembly and Single Nucleotide Polymorphism (SNP) discovery. Preliminary population genomic analyses (global AMOVA and Bayesian clustering) were implemented. Our results showed that the 2b-RAD genotyping protocol is effective for R. ecuadoriensis and likely for other triatomine species. However, only BcgI and CspCI restriction enzymes provided a number of markers suitable for population genomic analysis at the read depth we generated. Our preliminary genomic analyses detected a signal of genetic structuring across the study area. Conclusions/Significance: Our findings suggest that 2b-RAD genotyping is both a cost effective and methodologically simple approach for generating high resolution genomic data for Chagas disease vectors with the power to distinguish between different vector populations at epidemiologically relevant scales. As such, 2b-RAD represents a powerful tool in the hands of medical entomologists with limited access to specialized molecular biological equipment. Author summary: Understanding Chagas disease vector (triatomine) population dispersal is key for the design of control measures tailored for the epidemiological situation of a particular region. In Ecuador, Rhodnius ecuadoriensis is a cause of concern for Chagas disease transmission, since it is widely distributed from the central coast to southern Ecuador. Here, a genome-wide sequencing (2b-RAD) approach was performed in 20 specimens from four communities from Manabí (central coast) and Loja (southern) provinces of Ecuador, and the effectiveness of three type IIB restriction enzymes was assessed. The findings of this study show that this genotyping methodology is cost effective in R. ecuadoriensis and likely in other triatomine species. In addition, preliminary population genomic analysis results detected a signal of population structure among geographically distinct communities and genetic variability within communities. As such, 2b-RAD shows significant promise as a relatively low-tech solution for determination of vector population genomics, dynamics, and spread

    A practical guide to design and assess a phylogenomic study

    Full text link
    Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of 'big data' molecular phylogenetics provided a battery of new tools for biologists but simultaneously brought new methodological challenges. The increase in analytical complexity comes at the price of highly specific training in computational biology and molecular phy- logenetics, resulting very often in a polarized accumulation of knowledge (technical on one side and biological on the other). Interpreting the robustness of genome-scale phylogenetic studies is not straightforward, particularly as new methodological developments have consistently shown that the general belief of 'more genes, more robustness' often does not apply, and because there is a range of systematic errors that plague phylogenomic investigations. This is particularly problematic because phylogenomic studies are highly heterogeneous in their methodology, and best practices are often not clearly defined. The main aim of this article is to present what I consider as the ten most important points to take into consideration when plan- ning a well-thought-out phylogenomic study and while evaluating the quality of published papers. The goal is to provide a practical step-by-step guide that can be easily followed by nonexperts and phylogenomic novices in order to assess the tech- nical robustness of phylogenomic studies or improve the experimental design of a project

    Doctor of Philosophy

    Get PDF
    dissertationWith the tremendous growth of data produced in the recent years, it is impossible to identify patterns or test hypotheses without reducing data size. Data mining is an area of science that extracts useful information from the data by discovering patterns and structures present in the data. In this dissertation, we will largely focus on clustering which is often the first step in any exploratory data mining task, where items that are similar to each other are grouped together, making downstream data analysis robust. Different clustering techniques have different strengths, and the resulting groupings provide different perspectives on the data. Due to the unsupervised nature i.e., the lack of domain experts who can label the data, validation of results is very difficult. While there are measures that compute "goodness" scores for clustering solutions as a whole, there are few methods that validate the assignment of individual data items to their clusters. To address these challenges we focus on developing a framework that can generate, compare, combine, and evaluate different solutions to make more robust and significant statements about the data. In the first part of this dissertation, we present fast and efficient techniques to generate and combine different clustering solutions. We build on some recent ideas on efficient representations of clusters of partitions to develop a well founded metric that is spatially aware to compare clusterings. With the ability to compare clusterings, we describe a heuristic to combine different solutions to produce a single high quality clustering. We also introduce a Markov chain Monte Carlo approach to sample different clusterings from the entire landscape to provide the users with a variety of choices. In the second part of this dissertation, we build certificates for individual data items and study their influence on effective data reduction. We present a geometric approach by defining regions of influence for data items and clusters and use this to develop adaptive sampling techniques to speedup machine learning algorithms. This dissertation is therefore a systematic approach to study the landscape of clusterings in an attempt to provide a better understanding of the data

    Robust Algorithms for Detecting Hidden Structure in Biological Data

    Get PDF
    Biological data, such as molecular abundance measurements and protein sequences, harbor complex hidden structure that reflects its underlying biological mechanisms. For example, high-throughput abundance measurements provide a snapshot the global state of a living cell, while homologous protein sequences encode the residue-level logic of the proteins\u27 function and provide a snapshot of the evolutionary trajectory of the protein family. In this work I describe algorithmic approaches and analysis software I developed for uncovering hidden structure in both kinds of data. Clustering is an unsurpervised machine learning technique commonly used to map the structure of data collected in high-throughput experiments, such as quantification of gene expression by DNA microarrays or short-read sequencing. Clustering algorithms always yield a partitioning of the data, but relying on a single partitioning solution can lead to spurious conclusions. In particular, noise in the data can cause objects to fall into the same cluster by chance rather than due to meaningful association. In the first part of this thesis I demonstrate approaches to clustering data robustly in the presence of noise and apply robust clustering to analyze the transcriptional response to injury in a neuron cell. In the second part of this thesis I describe identifying hidden specificity determining residues (SDPs) from alignments of protein sequences descended through gene duplication from a common ancestor (paralogs) and apply the approach to identify numerous putative SDPs in bacterial transcription factors in the LacI family. Finally, I describe and demonstrate a new algorithm for reconstructing the history of duplications by which paralogs descended from their common ancestor. This algorithm addresses the complexity of such reconstruction due to indeterminate or erroneous homology assignments made by sequence alignment algorithms and to the vast prevalence of divergence through speciation over divergence through gene duplication in protein evolution

    Machine learning for biological network inference

    Get PDF

    Signatures of T cell immunity revealed using sequence similarity with TCRDivER algorithm

    Get PDF
    Changes in the T cell receptor (TCR) repertoires have become important markers for monitoring disease or therapy progression. With the rise of immunotherapy usage in cancer, infectious and autoimmune disease, accurate assessment and comparison of the "state" of the TCR repertoire has become paramount. One important driver of change within the repertoire is T cell proliferation following immunisation. A way of monitoring this is by investigating large clones of individual T cells believed to bind epitopes connected to the disease. However, as a single target can be bound by many different TCRs, monitoring individual clones cannot fully account for T cell cross-reactivity. Moreover, T cells responding to the same target often exhibit higher sequence similarity, which highlights the importance of accounting for TCR similarity within the repertoire. This complexity of binding relationships between a TCR and its target convolutes comparison of immune responses between individuals or comparisons of TCR repertoires at different timepoints. Here we propose TCRDivER algorithm (T cell Receptor Diversity Estimates for Repertoires), a global method of T cell repertoire comparison using diversity profiles sensitive to both clone size and sequence similarity. This approach allowed for distinction between spleen TCR repertoires of immunised and non-immunised mice, showing the need for including both facets of repertoire changes simultaneously. The analysis revealed biologically interpretable relationships between sequence similarity and clonality. These aid in understanding differences and separation of repertoires stemming from different biological context. With the rise of availability of sequencing data we expect our tool to find broad usage in clinical and research applications
    corecore