100 research outputs found

    The use of a multilayer perceptron for detecting new human settlements from a time series of MODIS images

    Get PDF
    This paper presents a novel land cover change detection method that employs a sliding window over hyper-temporal multi-spectral images acquired from the 7 bands of the MODerate-resolution Imaging Spectroradiometer (MODIS) land surface reflectance product. The method uses a Feedforward Multilayer Perceptron (MLP) for supervised change detection that operates on multi-spectral time series extracted with a sliding window from the dataset. The method was evaluated on both real and simulated land cover change examples. The simulated land cover change comprises of concatenated time series that are produced by blending actual time series of pixels from human settlements to those from adjacent areas covered by natural vegetation. The method employs an iteratively retrained MLP to capture all local patterns and to compensate for the time-varying climate in the geographical area. The iteratively retrained MLP was compared to a classical batch mode trained MLP. Depending on the length of the temporal sliding window used, an overall change detection accuracy between 83% and 90% was achieved. It is shown that a sliding window of 6 months using all 7 bands of MODIS data is sufficient to detect land cover change reliably. Window sizes of 18 months and longer provide minor improvements to classification accuracy and change detection performance at the cost of longer time delays.The CSIR Strategic Research Panelhttp://www.elsevier.com/locate/jagai201

    Rapid detection of new and expanding human settlements in the Limpopo province of South Africa using a spatio-temporal change detection method

    Get PDF
    Recent development has identified the benefits of using hyper-temporal satellite time series data for land cover change detection and classification in South Africa. In particular, the monitoring of human settlement expansion in the Limpopo province is of relevance as it is the one of the most pervasive forms of land-cover change in this province which covers an area of roughly 125 000km2. In this paper, a spatiotemporal autocorrelation change detection (STACD) method is developed to improve the performance of a pixel based temporal Autocorrelation change detection (TACD) method previously proposed. The objective is to apply the algorithm to large areas to detect the conversion of natural vegetation to settlement which is then validated by an operator using additional data (such as high resolution imagery). Importantly, as the objective of the method is to indicate areas of potential change to operators for further analysis, a low false alarm rate is required while achieving an acceptable probability of detection. Results indicate that detection accuracies of 70% of new settlement instances are achievable at a false alarm rate of less than 1% with the STACD method, an improvement of up to 17% compared to the original TACD formulation.http://www.elsevier.com/locate/jag2016-08-30hb201

    Using Page's cumulative sum test on MODIS time series to detect land-cover changes

    Get PDF
    Human settlement expansion is one of the most pervasive forms of land cover change in South Africa. The use of Page’s Cumulative Sum Test is proposed as a method to detect new settlement developments in areas that were previously covered by natural vegetation using 500 m MODIS time series satellite data. The method is a sequential per pixel change alarm algorithm that can take into account positive detection delay, probability of detection and false alarm probability to construct a threshold. Simulated change data was generated to determine a threshold during a preliminary off-line optimization phase. After optimization the method was evaluated on examples of known land cover change in the Gauteng and Limpopo provinces of South Africa. The experimental results indicated that CUSUM performs better than band differencing in the before mentioned study areas.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859hb2013ai201

    Land cover change detection using autocorrelation analysis on MODIS time-series data : detection of new human settlements in the Gauteng province of South Africa

    Get PDF
    Human settlement expansion is one of the most pervasive forms of land cover change in the Gauteng province of South Africa. A method for detecting new settlement developments in areas that are typically covered by natural vegetation using 500 m MODIS time-series satellite data is proposed. The method is a per pixel change alarm that uses the temporal autocorrelation to infer a change index which yields a change or no-change decision after thresholding. Simulated change data was generated and used to determine a threshold during an off-line optimization phase. After optimization the method was evaluated on examples of known land cover change in the study area and experimental results indicate a 92% change detection accuracy with a 15% false alarm rate. The method shows good performance when compared to a traditional NDVI differencing method that achieved a 75% change detection accuracy with a 24% false alarm rate for the same study area.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?reload=true&punumber=4609443hb2017Electrical, Electronic and Computer Engineerin

    Meta-optimization of the Extended Kalman filter's parameters through the use of the Bias-Variance Equilibrium Point criterion

    Get PDF
    The extraction of information on land cover classes using unsupervised methods has always been of relevance to the remote sensing community. In this paper, a novel criterion is proposed, which extracts the inherent information in an unsupervised fashion from a time series. The criterion is used to fit a parametric model to a time series, derive the corresponding covariance matrices of the parameters for the model, and estimate the additive noise on the time series. The proposed criterion uses both spatial and temporal information when estimating the covariance matrices and can be extended to incorporate spectral information. The algorithm used to estimate the parameters for the model is the extended Kalman filter (EKF). An unsupervised search algorithm, specifically designed for this criterion, is proposed in conjunction with the criterion that is used to rapidly and efficiently estimate the variables. The search algorithm attempts to satisfy the criterion by employing density adaptation to the current candidate system. The application in this paper is the use of an EKF to model Moderate Resolution Imaging Spectroradiometer time series with a triply modulated cosine function as the underlying model. The results show that the criterion improved the fit of the triply modulated cosine function by an order of magnitude on the time series over all seven spectral bands when compared with the other methods. The state space variables derived from the EKF are then used for both land cover classification and land cover change detection. The method was evaluated in the Gauteng province of South Africa where it was found to significantly improve on land cover classification and change detection accuracies when compared with other methods.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36hb201

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing
    • …
    corecore