1,834 research outputs found

    Going the distance for protein function prediction: a new distance metric for protein interaction networks

    Get PDF
    Due to an error introduced in the production process, the x-axes in the first panels of Figure 1 and Figure 7 are not formatted correctly. The correct Figure 1 can be viewed here: http://dx.doi.org/10.1371/annotation/343bf260-f6ff-48a2-93b2-3cc79af518a9In protein-protein interaction (PPI) networks, functional similarity is often inferred based on the function of directly interacting proteins, or more generally, some notion of interaction network proximity among proteins in a local neighborhood. Prior methods typically measure proximity as the shortest-path distance in the network, but this has only a limited ability to capture fine-grained neighborhood distinctions, because most proteins are close to each other, and there are many ties in proximity. We introduce diffusion state distance (DSD), a new metric based on a graph diffusion property, designed to capture finer-grained distinctions in proximity for transfer of functional annotation in PPI networks. We present a tool that, when input a PPI network, will output the DSD distances between every pair of proteins. We show that replacing the shortest-path metric by DSD improves the performance of classical function prediction methods across the board.MC, HZ, NMD and LJC were supported in part by National Institutes of Health (NIH) R01 grant GM080330. JP was supported in part by NIH grant R01 HD058880. This material is based upon work supported by the National Science Foundation under grant numbers CNS-0905565, CNS-1018266, CNS-1012910, and CNS-1117039, and supported by the Army Research Office under grant W911NF-11-1-0227 (to MEC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    SWIM: A computational tool to unveiling crucial nodes in complex biological networks

    Get PDF
    SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called "fight-club hubs", characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called "switch genes", appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance. Here, we applied SWIM to a large panel of cancer datasets from The Cancer Genome Atlas, in order to highlight switch genes that could be critically associated with the drastic changes in the physiological state of cells or tissues induced by the cancer development. We discovered that switch genes are found in all cancers we studied and they encompass protein coding genes and non-coding RNAs, recovering many known key cancer players but also many new potential biomarkers not yet characterized in cancer context. Furthermore, SWIM is amenable to detect switch genes in different organisms and cell conditions, with the potential to uncover important players in biologically relevant scenarios, including but not limited to human cancer

    Human Cancer Protein-Protein Interaction Network: A Structural Perspective

    Get PDF
    Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network). The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%). We illustrate the interface related affinity properties of two cancer-related hub proteins: Erbb3, a multi interface, and Raf1, a single interface hub. The results reveal that affinity of interactions of the multi-interface hub tends to be higher than that of the single-interface hub. These findings might be important in obtaining new targets in cancer as well as finding the details of specific binding regions of putative cancer drug candidates

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    Hub characteristics extraction of human proteins using tumor protein P53 – A case study

    Get PDF
    This paper addresses the characteristic extraction of hub protein based on Tumor Protein P53 whose properties are already established and known to have key functionalities. These characteristics can throw some light in the direction of hub classification in a cost effective manner. Current methods in this line use Gene Ontology database or sequence homology which are time consuming and complex. The proposed method uses a 420 element vector for the characteristic filtering of hub character from HPRD database and has shown some positive results

    Graphlet-adjacencies provide complementary views on the functional organisation of the cell and cancer mechanisms

    Get PDF
    Recent biotechnological advances have led to a wealth of biological network data. Topo- logical analysis of these networks (i.e., the analysis of their structure) has led to break- throughs in biology and medicine. The state-of-the-art topological node and network descriptors are based on graphlets, induced connected subgraphs of different shapes (e.g., paths, triangles). However, current graphlet-based methods ignore neighbourhood infor- mation (i.e., what nodes are connected). Therefore, to capture topology and connectivity information simultaneously, I introduce graphlet adjacency, which considers two nodes adjacent based on their frequency of co-occurrence on a given graphlet. I use graphlet adjacency to generalise spectral methods and apply these on molecular networks. I show that, depending on the chosen graphlet, graphlet spectral clustering uncovers clusters en- riched in different biological functions, and graphlet diffusion of gene mutation scores predicts different sets of cancer driver genes. This demonstrates that graphlet adjacency captures topology-function and topology-disease relationships in molecular networks. To further detail these relationships, I take a pathway-focused approach. To enable this investigation, I introduce graphlet eigencentrality to compute the importance of a gene in a pathway either from the local pathway perspective or from the global network perspective. I show that pathways are best described by the graphlet adjacencies that capture the importance of their functionally critical genes. I also show that cancer driver genes characteristically perform hub roles between pathways. Given the latter finding, I hypothesise that cancer pathways should be identified by changes in their pathway-pathway relationships. Within this context, I propose pathway- driven non-negative matrix tri-factorisation (PNMTF), which fuses molecular network data and pathway annotations to learn an embedding space that captures the organisation of a network as a composition of subnetworks. In this space, I measure the functional importance of a pathway or gene in the cell and its functional disruption in cancer. I apply this method to predict genes and the pathways involved in four major cancers. By using graphlet-adjacency, I can exploit the tendency of cancer-related genes to perform hub roles to improve the prediction accuracy

    Predicted protein-protein interactions in the moss Physcomitrella patens: a new bioinformatic resource.

    Get PDF
    BACKGROUND: Physcomitrella patens, a haploid dominant plant, is fast becoming a useful molecular genetics and bioinformatics tool due to its key phylogenetic position as a bryophyte in the post-genomic era. Genome sequences from select reference species were compared bioinformatically to Physcomitrella patens using reciprocal blasts with the InParanoid software package. A reference protein interaction database assembled using MySQL by compiling BioGrid, BIND, DIP, and Intact databases was queried for moss orthologs existing for both interacting partners. This method has been used to successfully predict interactions for a number of angiosperm plants. RESULTS: The first predicted protein-protein interactome for a bryophyte based on the interolog method contains 67,740 unique interactions from 5,695 different Physcomitrella patens proteins. Most conserved interactions among proteins were those associated with metabolic processes. Over-represented Gene Ontology categories are reported here. CONCLUSION: Addition of moss, a plant representative 200 million years diverged from angiosperms to interactomic research greatly expands the possibility of conducting comparative analyses giving tremendous insight into network evolution of land plants. This work helps demonstrate the utility of guilt-by-association models for predicting protein interactions, providing provisional roadmaps that can be explored using experimental approaches. Included with this dataset is a method for characterizing subnetworks and investigating specific processes, such as the Calvin-Benson-Bassham cycle
    • …
    corecore