9,365 research outputs found

    A digital twin framework for predictive maintenance in industry 4.0

    Get PDF
    The rapid advancements in manufacturing technologies are transforming the current industrial landscape through Industry 4.0, which refers not only to the integration of information technology with industrial production, but also to the use of innovative technologies and novel data management approaches. The target is to enable the manufacturers and the entire supply chain to save time, boost productivity, reduce waste and costs, and respond flexibly and efficiently to consumers’ requirements. Industry 4.0 moves the digitization of manufacturing components and processes a step further by creating smart factories. Within this context, one of the key enabling technologies for Industry 4.0 is the adoption and integration of the Digital Twin (DT). However, most of the DT solutions provided by the current leading vendors are in fact digital models or digital shadows, and not digital twins. This is due to the fact that there is no common understanding of the definition of the DT amongst the leading vendors, and its usage is slightly different but showcased under the same umbrella of DT. In this paper, a DT framework is proposed that replicates the processes of a real production line for product assembly using the Festo Cyber Physical Factory for Industry 4.0 located at Middlesex University. Moreover, the paper introduces a viable framework for interlinking the physical system with its digital instance in order to offer extended predictive maintenance services and form a fully integrated digital twin solution

    ARCHITECTURE FOR A CBM+ AND PHM CENTRIC DIGITAL TWIN FOR WARFARE SYSTEMS

    Get PDF
    The Department of the Navy’s continued progression from time-based maintenance into condition-based maintenance plus (CBM+) shows the importance of increasing operational availability (Ao) across fleet weapon systems. This capstone uses the concept of digital efficiency from a digital twin (DT) combined with a three-dimensional (3D) direct metal laser melting printer as the physical host on board a surface vessel. The DT provides an agnostic conduit for combining model-based systems engineering with a digital analysis for real-time prognostic health monitoring while improving predictive maintenance. With the DT at the forefront of prioritized research and development, the 3D printer combines the value of additive manufacturing with complex systems in dynamic shipboard environments. To demonstrate that the DT possesses parallel abilities for improving both the physical host’s Ao and end-goal mission, this capstone develops a DT architecture and a high-level model. The model focuses on specific printer components (deionized [DI] water level, DI water conductivity, air filters, and laser motor drive system) to demonstrate the DT’s inherent effectiveness towards CBM+. To embody the system of systems analysis for printer suitability and performance, more components should be evaluated and combined with the ship’s environment data. Additionally, this capstone recommends the use of DTs as a nexus into more complex weapon systems while using a deeper level of design of experiment.Outstanding ThesisCivilian, Department of the NavyCommander, United States NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyApproved for public release. Distribution is unlimited

    Predictive Maintenance on the Machining Process and Machine Tool

    Get PDF
    This paper presents the process required to implement a data driven Predictive Maintenance (PdM) not only in the machine decision making, but also in data acquisition and processing. A short review of the different approaches and techniques in maintenance is given. The main contribution of this paper is a solution for the predictive maintenance problem in a real machining process. Several steps are needed to reach the solution, which are carefully explained. The obtained results show that the Preventive Maintenance (PM), which was carried out in a real machining process, could be changed into a PdM approach. A decision making application was developed to provide a visual analysis of the Remaining Useful Life (RUL) of the machining tool. This work is a proof of concept of the methodology presented in one process, but replicable for most of the process for serial productions of pieces

    Harnessing the Power of Digital Twins for Enhanced Material Behavior Prediction and Manufacturing Process Optimization in Materials Engineering

    Get PDF
    The advent of Industry 4.0 and the digital revolution have brought forth innovative technologies such as digital twins, which have the potential to redefine the landscape of materials engineering. Digital twins, virtual representations of physical entities, can model and predict material behavior, enabling enhanced design, testing, and manufacturing of materials. However, the comprehensive utilization of digital twins for predictive analysis and process optimization in materials engineering remains largely uncharted. This research intends to delve into this intriguing intersection, investigating the capabilities of digital twins in predicting material behavior and optimizing manufacturing processes, thereby contributing to the evolution of advanced materials manufacturing. Our study will commence with a detailed exploration of the concept of digital twins and their specific applications in materials engineering, emphasizing their ability to simulate intricate material behaviors and processes in a virtual environment. Subsequently, we will focus on exploiting digital twins for predicting diverse material behaviors such as mechanical properties, failure modes, and phase transformations, demonstrating how digital twins can utilize a combination of historical data, real-time monitoring, and sophisticated algorithms to predict outcomes accurately. Furthermore, we will delve into the role of digital twins in optimizing materials manufacturing processes, including casting, machining, and additive manufacturing, illustrating how digital twins can model these processes, identify potential issues, and suggest optimal parameters. We will present detailed case studies to provide practical insights into the implementation of digital twins in materials engineering, including the advantages and challenges. The final segment of our research will address the current challenges in implementing digital twins, such as data quality, model validation, and computational demands, proposing potential solutions and outlining future directions. This research aims to underline the transformative potential of digital twins in materials engineering, thereby paving the way for more efficient, sustainable, and intelligent material design and manufacturing processes

    COGNIBUILD: Cognitive Digital Twin framework for advanced building management and predictive maintenance

    Get PDF
    According to contemporary challenges of digital evolution in management and maintenance of construction processes, the present study aims at defining valuable strategies for building management optimization. As buildings and infrastructures Digital Twins (DT) are directly connected to physical environment through the Internet of Things (IoT), asset management and control processes can be radically transformed. The proposed DT framework connects Building Information Model (BIM) three-dimensional objects to information about the planned maintenance of components, supplying system’s self-learning capabilities through input data coming from Building Management Systems (BMS), ticketing, as well as maintenance activities data flow both as-needed or unexpected. The concept of real-time acquisition and data processing set the basis for the proposed system architecture, allowing to perform analysis and evaluate alternative scenarios promptly responding to unexpected events with a higher accuracy over time. Moreover, the integration of Artificial Intelligence (AI) allows the development of maintenance predictive capabilities, optimizing decision making processes and implementing strategies based on the performed analysis, configuring a scalable approach useful for different scenarios. The proposed approach is related to the evolution from reactive to proactive strategies based on Cognitive Digital Twins (CDT) for Building and Facility Management, providing actionable solutions through operational, monitoring and maintenance data. Through the integration of BIM data with information systems, BMS, IoT and Machine Learning, the optimization and real-time automation of maintenance activities is performed, radically reducing failures and systems breakdowns. Therefore, integrating different technologies in a virtual environment allows to define data-driven predictive models supporting Building Managers in decision making processes improving efficiency over time and moving from reactive to proactive approaches
    • …
    corecore