101 research outputs found

    Exploring a resource allocation security protocol for secure service migration in commercial cloud environments

    Get PDF
    Recently, there has been a significant increase in the popularity of cloud computing systems that offer Cloud services such as Networks, Servers, Storage, Applications, and other available on-demand re-sources or pay-as-you-go systems with different speeds and Qualities of Service. These cloud computing environments share resources by providing virtualization techniques that enable a single user to ac-cess various Cloud Services Thus, cloud users have access to an infi-nite computing resource, allowing them to increase or decrease their resource consumption capacity as needed. However, an increasing number of Commercial Cloud Services are available in the market-place from a wide range of Cloud Service Providers (CSPs). As a result, most CSPs must deal with dynamic resource allocation, in which mobile services migrate from one cloud environment to another to provide heterogeneous resources based on user requirements. A new service framework has been proposed by Sardis about how ser-vices can be migrated in Cloud Infrastructure. However, it does not address security and privacy issues in the migration process. Fur-thermore, there is still a lack of heuristic algorithms that can check requested and available resources to allocate and deallocate before the secure migration begins. The advent of Virtual machine technol-ogy, for example, VMware, and container technology, such as Docker, LXD, and Unikernels has made the migration of services possible. As Cloud services, such as Vehicular Cloud, are now being increasingly offered in highly mobile environments, Y-Comm, a new framework for building future mobile systems, has developed proactive handover to support the mobile user. Though there are many mechanisms in place to provide support for mobile services, one way of addressing the challenges arising because of this emerging application is to move the computing resources closer to the end-users and find how much computing resources should be allocated to meet the performance re-quirements/demands. This work addresses the above challenges by proposing the development of resource allocation security protocols for secure service migration that allow the safe transfer of servers and monitoring of the capacity of requested resources to different Cloud environments. In this thesis, we propose a Resource Allocation Secu-rity Protocol for secure service migration that allows resources to be allocated efficiently is analyzed. In our research, we use two differ-ent formal modelling and verification techniques to verify an abstract protocol and validate the security properties such as secrecy, authen-tication, and key exchange for secure service migration. The new protocol has been verified in AVISPA and ProVerif formal verifier and is being implemented in a new Service Management Framework Prototype to securely manage and allocate resources in Commercial Cloud Environments. And then, a Capability-Based Secure Service Protocol (SSP) was developed to ensure that capability-based service protocol proves secrecy, authentication, and authorization, and that it can be applied to any service. A basic prototype was then devel-oped to test these ideas using a block storage system known as the Network Memory Service. This service was used as the backend of a FUSE filesystem. The results show that this approach can be safely implemented and should perform well in real environments

    Securing mHealth - Investigating the development of a novel information security framework

    Get PDF
    The deployment of Mobile Health (mHealth) platforms as well as the use of mobile and wireless technologies have significant potential to transform healthcare services. The use of mHealth technologies allow a real-time remote monitoring as well as direct access to healthcare data so that users (e.g., patients and healthcare professionals) can utilise mHealth services anywhere and anytime. Generally, mHealth offers smart solutions to tackle challenges in healthcare. However, there are still various issues regarding the development of the mHealth system. One of the most common diffi-culties in developing the mHealth system is the security of healthcare data. mHealth systems are still vulnerable to numerous security issues with regard to their weak-nesses in design and data management. Several information security frameworks for mHealth devices as well as information security frameworks for Cloud storage have been proposed, however, the major challenge is developing an effective information se-curity framework that will encompass every component of an mHealth system to secure sensitive healthcare data. This research investigates how healthcare data is managed in mHealth systems and proposes a new information security framework that secures mHealth systems. Moreover, a prototype is developed for the purpose of testing the proposed information security framework. Firstly, risk identification is carried out to determine what could happen to cause potential damage and to gain insight into how, where, and why the damage might happen. The process of risk identification includes the identification of assets those need to be protected, threats that we try to protect against, and vulnerabilities that are weaknesses in mHealth systems. Afterward, a detailed analysis of the entire mHealth domain is undertaken to determine domain-specific features and a taxonomy for mHealth, from which a set of the most essential security requirements is identified to develop a new information security framework. It then examines existing information security frameworks for mHealth devices and the Cloud, noting similarities and differences. Key mechanisms to implement the new framework are discussed and the new framework is then presented. Furthermore, a prototype is developed for the purpose of testing. It consists of four layers including an mHealth secure storage system, Capability system, Secure transactional layer, and Service management layer. Capability system, Secure transactional layer, and Service management layer are developed as main contributions of the research

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    A survey on 5G networks for the Internet of Things : communication technologies and challenges

    Get PDF
    The Internet of Things (IoT) is a promising technology which tends to revolutionize and connect the global world via heterogeneous smart devices through seamless connectivity. The current demand for machine-type communications (MTC) has resulted in a variety of communication technologies with diverse service requirements to achieve the modern IoT vision. More recent cellular standards like long-term evolution (LTE) have been introduced for mobile devices but are not well suited for low-power and low data rate devices such as the IoT devices. To address this, there is a number of emerging IoT standards. Fifth generation (5G) mobile network, in particular, aims to address the limitations of previous cellular standards and be a potential key enabler for future IoT. In this paper, the state-of-the-art of the IoT application requirements along with their associated communication technologies are surveyed. In addition, the third generation partnership project cellular-based low-power wide area solutions to support and enable the new service requirements for Massive to Critical IoT use cases are discussed in detail, including extended coverage global system for mobile communications for the Internet of Things, enhanced machine-type communications, and narrowband-Internet of Things. Furthermore, 5G new radio enhancements for new service requirements and enabling technologies for the IoT are introduced. This paper presents a comprehensive review related to emerging and enabling technologies with main focus on 5G mobile networks that is envisaged to support the exponential traf c growth for enabling the IoT. The challenges and open research directions pertinent to the deployment of massive to critical IoT applications are also presented in coming up with an ef cient context-aware congestion control mechanism.In part by the Department of Research and International Support, University of Pretoria, South Africa, and in part by the Meraka Institute, Council for Scientific and Industrial Research, South Africa.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639am2018Electrical, Electronic and Computer Engineerin

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives

    Towards transparent and secure IoT: Device intents declaration, and user privacy self awareness and control

    Get PDF
    In recent years, we have seen a growing wave of integration of new IoT (Internet of Things) technologies into society. The massive integration of these technologies has led to the emergence of several critical issues which have consequently created new challenges, for which no obvious answers have yet been found. One of the main challenges has to do with the security and privacy of information processed by IoT devices present in our daily life. At present there are no guarantees from the manufacturers of such IoT devices, which are connected on our networks, as regards the collection and sending of personal information, nor an expected behavior. Thus, in this work, we developed and tested a solution that aims to increase the privacy and security of information in Networks of IoT devices, from the perspective of controlling the communication of smart devices on the network. To include one tool capable of analyzing packets sent by IoT devices and another capable of defining and allowing the application of network traffic control rules to the packets in question. These tools were indispensable for investigation of the two central aspects of this dissertation, which are investigating how the declarations of communication intentions of the IoT devices specified by the manufacturers are used, in order to facilitate control of communication by consumers and enable them to detect violations of those intentions, and how to give users/consumers control over IoT communication, so that they can define what they do and do not want their devices to communicate.Nos últimos anos, assistimos a uma onda de crescimento da integração de novas tecnologias IoT (Internet Of Things) na sociedade. A integração massiva destas tecnologias levou ao aparecimento de vários aspetos críticos que, consequentemente, criou novos desafios, para os quais ainda não foram dadas respostas óbvias. Um dos principais desafios diz respeito à segurança e privacidade da informação dos dispositivos IoT presentes no nosso dia-a-dia. Atualmente, não existem quaisquer garantias por parte dos fabricantes destes equipamentos IoT, que estão conectados nas nossas redes, relativamente à recolha e envio de informação pessoal realizada pelos mesmos, bem como um comportamento expectável. Assim, neste trabalho, desenvolvemos e testamos uma solução que cujo objetivo é aumentar a privacidade e segurança da informação em redes de dispositivos IoT, na perspetiva do controlo da comunicação dos dispositivos inteligentes na rede. Para incluir-se uma ferramenta capaz de efetuar análise dos pacotes enviados pelos dispositivos IoT e uma outra capaz de definir e permitir a aplicação de regras de controlo de tráfego de rede aos pacotes mencionados. Estas ferramentas foram indispensáveis para a investigação dos dois aspetos centrais desta dissertação, que são a investigação de como as declarações de intenções de comunicação dos dispositivos IoT especificados pelos fabricantes são utilizadas, para facilitarem o controlo de comunicação destes pelos consumidores e permitir-lhes detetar violações dessas intenções e como atribuir ao utilizador/consumidor controlo sobre a comunicação IoT, para que este possa explicitar o pretende e não pretende que os seus dispositivos comuniquem

    Orchestration of distributed ingestion and processing of IoT data for fog platforms

    Get PDF
    In recent years there has been an extraordinary growth of the Internet of Things (IoT) and its protocols. The increasing diffusion of electronic devices with identification, computing and communication capabilities is laying ground for the emergence of a highly distributed service and networking environment. The above mentioned situation implies that there is an increasing demand for advanced IoT data management and processing platforms. Such platforms require support for multiple protocols at the edge for extended connectivity with the objects, but also need to exhibit uniform internal data organization and advanced data processing capabilities to fulfill the demands of the application and services that consume IoT data. One of the initial approaches to address this demand is the integration between IoT and the Cloud computing paradigm. There are many benefits of integrating IoT with Cloud computing. The IoT generates massive amounts of data, and Cloud computing provides a pathway for that data to travel to its destination. But today’s Cloud computing models do not quite fit for the volume, variety, and velocity of data that the IoT generates. Among the new technologies emerging around the Internet of Things to provide a new whole scenario, the Fog Computing paradigm has become the most relevant. Fog computing was introduced a few years ago in response to challenges posed by many IoT applications, including requirements such as very low latency, real-time operation, large geo-distribution, and mobility. Also this low latency, geo-distributed and mobility environments are covered by the network architecture MEC (Mobile Edge Computing) that provides an IT service environment and Cloud-computing capabilities at the edge of the mobile network, within the Radio Access Network (RAN) and in close proximity to mobile subscribers. Fog computing addresses use cases with requirements far beyond Cloud-only solution capabilities. The interplay between Cloud and Fog computing is crucial for the evolution of the so-called IoT, but the reach and specification of such interplay is an open problem. This thesis aims to find the right techniques and design decisions to build a scalable distributed system for the IoT under the Fog Computing paradigm to ingest and process data. The final goal is to explore the trade-offs and challenges in the design of a solution from Edge to Cloud to address opportunities that current and future technologies will bring in an integrated way. This thesis describes an architectural approach that addresses some of the technical challenges behind the convergence between IoT, Cloud and Fog with special focus on bridging the gap between Cloud and Fog. To that end, new models and techniques are introduced in order to explore solutions for IoT environments. This thesis contributes to the architectural proposals for IoT ingestion and data processing by 1) proposing the characterization of a platform for hosting IoT workloads in the Cloud providing multi-tenant data stream processing capabilities, the interfaces over an advanced data-centric technology, including the building of a state-of-the-art infrastructure to evaluate the performance and to validate the proposed solution. 2) studying an architectural approach following the Fog paradigm that addresses some of the technical challenges found in the first contribution. The idea is to study an extension of the model that addresses some of the central challenges behind the converge of Fog and IoT. 3) Design a distributed and scalable platform to perform IoT operations in a moving data environment. The idea after study data processing in Cloud, and after study the convenience of the Fog paradigm to solve the IoT close to the Edge challenges, is to define the protocols, the interfaces and the data management to solve the ingestion and processing of data in a distributed and orchestrated manner for the Fog Computing paradigm for IoT in a moving data environment.En els últims anys hi ha hagut un gran creixement del Internet of Things (IoT) i els seus protocols. La creixent difusió de dispositius electrònics amb capacitats d'identificació, computació i comunicació esta establint les bases de l’aparició de serveis altament distribuïts i del seu entorn de xarxa. L’esmentada situació implica que hi ha una creixent demanda de plataformes de processament i gestió avançada de dades per IoT. Aquestes plataformes requereixen suport per a múltiples protocols al Edge per connectivitat amb el objectes, però també necessiten d’una organització de dades interna i capacitats avançades de processament de dades per satisfer les demandes de les aplicacions i els serveis que consumeixen dades IoT. Una de les aproximacions inicials per abordar aquesta demanda és la integració entre IoT i el paradigma del Cloud computing. Hi ha molts avantatges d'integrar IoT amb el Cloud. IoT genera quantitats massives de dades i el Cloud proporciona una via perquè aquestes dades viatgin a la seva destinació. Però els models actuals del Cloud no s'ajusten del tot al volum, varietat i velocitat de les dades que genera l'IoT. Entre les noves tecnologies que sorgeixen al voltant del IoT per proporcionar un escenari nou, el paradigma del Fog Computing s'ha convertit en la més rellevant. Fog Computing es va introduir fa uns anys com a resposta als desafiaments que plantegen moltes aplicacions IoT, incloent requisits com baixa latència, operacions en temps real, distribució geogràfica extensa i mobilitat. També aquest entorn està cobert per l'arquitectura de xarxa MEC (Mobile Edge Computing) que proporciona serveis de TI i capacitats Cloud al edge per la xarxa mòbil dins la Radio Access Network (RAN) i a prop dels subscriptors mòbils. El Fog aborda casos d?us amb requisits que van més enllà de les capacitats de solucions només Cloud. La interacció entre Cloud i Fog és crucial per a l'evolució de l'anomenat IoT, però l'abast i especificació d'aquesta interacció és un problema obert. Aquesta tesi té com objectiu trobar les decisions de disseny i les tècniques adequades per construir un sistema distribuït escalable per IoT sota el paradigma del Fog Computing per a ingerir i processar dades. L'objectiu final és explorar els avantatges/desavantatges i els desafiaments en el disseny d'una solució des del Edge al Cloud per abordar les oportunitats que les tecnologies actuals i futures portaran d'una manera integrada. Aquesta tesi descriu un enfocament arquitectònic que aborda alguns dels reptes tècnics que hi ha darrere de la convergència entre IoT, Cloud i Fog amb especial atenció a reduir la bretxa entre el Cloud i el Fog. Amb aquesta finalitat, s'introdueixen nous models i tècniques per explorar solucions per entorns IoT. Aquesta tesi contribueix a les propostes arquitectòniques per a la ingesta i el processament de dades IoT mitjançant 1) proposant la caracterització d'una plataforma per a l'allotjament de workloads IoT en el Cloud que proporcioni capacitats de processament de flux de dades multi-tenant, les interfícies a través d'una tecnologia centrada en dades incloent la construcció d'una infraestructura avançada per avaluar el rendiment i validar la solució proposada. 2) estudiar un enfocament arquitectònic seguint el paradigma Fog que aborda alguns dels reptes tècnics que es troben en la primera contribució. La idea és estudiar una extensió del model que abordi alguns dels reptes centrals que hi ha darrere de la convergència de Fog i IoT. 3) Dissenyar una plataforma distribuïda i escalable per a realitzar operacions IoT en un entorn de dades en moviment. La idea després d'estudiar el processament de dades a Cloud, i després d'estudiar la conveniència del paradigma Fog per resoldre el IoT prop dels desafiaments Edge, és definir els protocols, les interfícies i la gestió de dades per resoldre la ingestió i processament de dades en un distribuït i orquestrat per al paradigma Fog Computing per a l'IoT en un entorn de dades en moviment
    • …
    corecore