524 research outputs found

    Confluence of Layered Rewrite Systems

    Get PDF
    We investigate a new, Turing-complete class of layered systems, whose linearized lefthand sides of rules can only be overlapped at the root position. Layered systems define a natural notion of rank for terms: the maximal number of redexes along a path from the root to a leaf. Overlappings are allowed in finite or infinite trees. Rules may be non-terminating, non-left-linear, or non-right- linear. Using a novel unification technique, cyclic unification, we show that rank non-increasing layered systems are confluent provided their cyclic critical pairs have cyclic-joinable decreasing diagrams

    Constraint Handling Rules with Binders, Patterns and Generic Quantification

    Full text link
    Constraint Handling Rules provide descriptions for constraint solvers. However, they fall short when those constraints specify some binding structure, like higher-rank types in a constraint-based type inference algorithm. In this paper, the term syntax of constraints is replaced by λ\lambda-tree syntax, in which binding is explicit; and a new \nabla generic quantifier is introduced, which is used to create new fresh constants.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017 16 pages, LaTeX, no PDF figure

    Basic Narrowing Revisited

    Get PDF
    In this paper we study basic narrowing as a method for solving equations in the initial algebra specified by a ground confluent and terminating term rewriting system. Since we are interested in equation solving, we don’t study basic narrowing as a reduction relation on terms but consider immediately its reformulation as an equation solving rule. This reformulation leads to a technically simpler presentation and reveals that the essence of basic narrowing can be captured without recourse to term unification. We present an equation solving calculus that features three classes of rules. Resolution rules, whose application is don’t care nondeterministic, are the basic rules and suffice for a complete solution procedure. Failure rules detect inconsistent parts of the search space. Simplification rules, whose application is don’t care nondeterministic, enhance the power of the failure rules and reduce the number of necessary don’t know steps. Three of the presented simplification rules are new. The rewriting rule allows for don’t care nondeterministic rewriting and thus yields a marriage of basic and normalizing narrowing. The safe blocking rule is specific to basic narrowing and is particulary useful in conjunction with the rewriting rule. Finally, the unfolding rule allows for a variety of search strategies that reduce the number of don’t know alternatives that need to be explored

    Termination of Narrowing: Automated Proofs and Modularity Properties

    Full text link
    En 1936 Alan Turing demostro que el halting problem, esto es, el problema de decidir si un programa termina o no, es un problema indecidible para la inmensa mayoria de los lenguajes de programacion. A pesar de ello, la terminacion es un problema tan relevante que en las ultimas decadas un gran numero de tecnicas han sido desarrolladas para demostrar la terminacion de forma automatica de la maxima cantidad posible de programas. Los sistemas de reescritura de terminos proporcionan un marco teorico abstracto perfecto para el estudio de la terminacion de programas. En este marco, la evaluaci on de un t ermino consiste en la aplicacion no determinista de un conjunto de reglas de reescritura. El estrechamiento (narrowing) de terminos es una generalizacion de la reescritura que proporciona un mecanismo de razonamiento automatico. Por ejemplo, dado un conjunto de reglas que denan la suma y la multiplicacion, la reescritura permite calcular expresiones aritmeticas, mientras que el estrechamiento permite resolver ecuaciones con variables. Esta tesis constituye el primer estudio en profundidad de las propiedades de terminacion del estrechamiento. Las contribuciones son las siguientes. En primer lugar, se identican clases de sistemas en las que el estrechamiento tiene un comportamiento bueno, en el sentido de que siempre termina. Muchos metodos de razonamiento automatico, como el analisis de la semantica de lenguajes de programaci on mediante operadores de punto jo, se benefician de esta caracterizacion. En segundo lugar, se introduce un metodo automatico, basado en el marco teorico de pares de dependencia, para demostrar la terminacion del estrechamiento en un sistema particular. Nuestro metodo es, por primera vez, aplicable a cualquier clase de sistemas. En tercer lugar, se propone un nuevo metodo para estudiar la terminacion del estrechamiento desde un termino particular, permitiendo el analisis de la terminacion de lenguajes de programacion. El nuevo metodo generaliza losIborra López, J. (2010). Termination of Narrowing: Automated Proofs and Modularity Properties [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19251Palanci

    Constrained completion: Theory, implementation, and results

    Get PDF
    The Knuth-Bendix completion procedure produces complete sets of reductions but can not handle certain rewrite rules such as commutativity. In order to handle such theories, completion procedure were created to find complete sets of reductions modulo an equational theory. The major problem with this method is that it requires a specialized unification algorithm for the equational theory. Although this method works well when such an algorithm exists, these algorithms are not always available and thus alternative methods are needed to attack problems. A way of doing this is to use a completion procedure which finds complete sets of constrained reductions. This type of completion procedure neither requires specialized unification algorithms nor will it fail due to unorientable identities. We present a look at complete sets of reductions with constraints, developed by Gerald Peterson, and the implementation of such a completion procedure for use with HIPER - a fast completion system. The completion procedure code is given and shown correct along with the various support procedures which are needed by the constrained system. These support procedures include a procedure to find constraints using the lexicographic path ordering and a normal form procedure for constraints. The procedure has been implemented for use under the fast HIPER system, developed by Jim Christian, and thus is quick. We apply this new system, HIPER- extension, to attack a variety of word problems. Implementation alternatives are discussed, developed, and compared with each other as well as with the HIPER system. Finally, we look at the problem of finding a complete set of reductions for a ternary boolean algebra. Given are alternatives to attacking this problem and the already known solution along with its run in the HIPER-extension system --Abstract, page iii
    corecore