291 research outputs found

    Constructions of Pure Asymmetric Quantum Alternant Codes Based on Subclasses of Alternant Codes

    Full text link
    In this paper, we construct asymmetric quantum error-correcting codes(AQCs) based on subclasses of Alternant codes. Firstly, We propose a new subclass of Alternant codes which can attain the classical Gilbert-Varshamov bound to construct AQCs. It is shown that when dx=2d_x=2, ZZ-parts of the AQCs can attain the classical Gilbert-Varshamov bound. Then we construct AQCs based on a famous subclass of Alternant codes called Goppa codes. As an illustrative example, we get three [[55,6,19/4]],[[55,10,19/3]],[[55,15,19/2]][[55,6,19/4]],[[55,10,19/3]],[[55,15,19/2]] AQCs from the well known [55,16,19][55,16,19] binary Goppa code. At last, we get asymptotically good binary expansions of asymmetric quantum GRS codes, which are quantum generalizations of Retter's classical results. All the AQCs constructed in this paper are pure

    New Identities Relating Wild Goppa Codes

    Get PDF
    For a given support L∈FqmnL \in \mathbb{F}_{q^m}^n and a polynomial g∈Fqm[x]g\in \mathbb{F}_{q^m}[x] with no roots in Fqm\mathbb{F}_{q^m}, we prove equality between the qq-ary Goppa codes Γq(L,N(g))=Γq(L,N(g)/g)\Gamma_q(L,N(g)) = \Gamma_q(L,N(g)/g) where N(g)N(g) denotes the norm of gg, that is gqm−1+⋯+q+1.g^{q^{m-1}+\cdots +q+1}. In particular, for m=2m=2, that is, for a quadratic extension, we get Γq(L,gq)=Γq(L,gq+1)\Gamma_q(L,g^q) = \Gamma_q(L,g^{q+1}). If gg has roots in Fqm\mathbb{F}_{q^m}, then we do not necessarily have equality and we prove that the difference of the dimensions of the two codes is bounded above by the number of distinct roots of gg in Fqm\mathbb{F}_{q^m}. These identities provide numerous code equivalences and improved designed parameters for some families of classical Goppa codes.Comment: 14 page

    The Dimension of Subcode-Subfields of Shortened Generalized Reed Solomon Codes

    Full text link
    Reed-Solomon (RS) codes are among the most ubiquitous codes due to their good parameters as well as efficient encoding and decoding procedures. However, RS codes suffer from having a fixed length. In many applications where the length is static, the appropriate length can be obtained by an RS code by shortening or puncturing. Generalized Reed-Solomon (GRS) codes are a generalization of RS codes, whose subfield-subcodes are extensively studied. In this paper we show that a particular class of GRS codes produces many subfield-subcodes with large dimension. An algorithm for searching through the codes is presented as well as a list of new codes obtained from this method

    Variations of the McEliece Cryptosystem

    Full text link
    Two variations of the McEliece cryptosystem are presented. The first one is based on a relaxation of the column permutation in the classical McEliece scrambling process. This is done in such a way that the Hamming weight of the error, added in the encryption process, can be controlled so that efficient decryption remains possible. The second variation is based on the use of spatially coupled moderate-density parity-check codes as secret codes. These codes are known for their excellent error-correction performance and allow for a relatively low key size in the cryptosystem. For both variants the security with respect to known attacks is discussed

    On the number of spurious memories in the Hopfield model

    Get PDF
    The outer-product method for programming the Hopfield model is discussed. The method can result in many spurious stable states-exponential in the number of vectors that are to be stored-even in the case when the vectors are orthogonal
    • 

    corecore