18,053 research outputs found

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(G)b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any GF\mathcal G \subsetneq \mathcal F and every 0id/210 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these d/2\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C(K)C(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure

    The Goldman bracket determines intersection numbers for surfaces and orbifolds

    Full text link
    In the mid eighties Goldman proved an embedded curve could be isotoped to not intersect a closed geodesic if and only if their Lie bracket (as defined in that work) vanished. Goldman asked for a topological proof and about extensions of the conclusion to curves with self-intersection. Turaev, in the late eighties, asked about characterizing simple closed curves algebraically, in terms of the same Lie structure. We show how the Goldman bracket answers these questions for all finite type surfaces. In fact we count self-intersection numbers and mutual intersection numbers for all finite type orientable orbifolds in terms of a new Lie bracket operation, extending Goldman's. The arguments are purely topological, or based on elementary ideas from hyperbolic geometry. These results are intended to be used to recognize hyperbolic and Seifert vertices and the gluing graph in the geometrization of three manifolds. The recognition is based on the structure of the String Topology bracket of three manifolds

    Restricted frame graphs and a conjecture of Scott

    Full text link
    Scott proved in 1997 that for any tree TT, every graph with bounded clique number which does not contain any subdivision of TT as an induced subgraph has bounded chromatic number. Scott also conjectured that the same should hold if TT is replaced by any graph HH. Pawlik et al. recently constructed a family of triangle-free intersection graphs of segments in the plane with unbounded chromatic number (thereby disproving an old conjecture of Erd\H{o}s). This shows that Scott's conjecture is false whenever HH is obtained from a non-planar graph by subdividing every edge at least once. It remains interesting to decide which graphs HH satisfy Scott's conjecture and which do not. In this paper, we study the construction of Pawlik et al. in more details to extract more counterexamples to Scott's conjecture. For example, we show that Scott's conjecture is false for any graph obtained from K4K_4 by subdividing every edge at least once. We also prove that if GG is a 2-connected multigraph with no vertex contained in every cycle of GG, then any graph obtained from GG by subdividing every edge at least twice is a counterexample to Scott's conjecture.Comment: 21 pages, 8 figures - Revised version (note that we moved some of our results to an appendix
    corecore