194 research outputs found

    An instance data repository for the round-robin sports timetabling problem

    Get PDF
    The sports timetabling problem is a combinatorial optimization problem that consists of creating a timetable that defines against whom, when and where teams play games. This is a complex matter, since real-life sports timetabling applications are typically highly constrained. The vast amount and variety of constraints and the lack of generally accepted benchmark problem instances make that timetable algorithms proposed in the literature are often tested on just one or two specific seasons of the competition under consideration. This is problematic since only a few algorithmic insights are gained. To mitigate this issue, this article provides a problem instance repository containing over 40 different types of instances covering artificial and real-life problem instances. The construction of such a repository is not trivial, since there are dozens of constraints that need to be expressed in a standardized format. For this, our repository relies on RobinX, an XML-supported classification framework. The resulting repository provides a (non-exhaustive) overview of most real-life sports timetabling applications published over the last five decades. For every problem, a short description highlights the most distinguishing characteristics of the problem. The repository is publicly available and will be continuously updated as new instances or better solutions become available

    A Comparative Analysis of Application of Genetic Algorithm and Particle Swarm Optimization in Solving Traveling Tournament Problem (TTP)

    Get PDF
    Traveling Tournament Problem (TTP) has been a major area of research due to its huge application in developing smooth and healthy match schedules in a tournament. The primary objective of a similar problem is to minimize the travel distance for the participating teams. This would incur better quality of the tournament as the players would experience least travel; hence restore better energy level. Besides, there would be a great benefit to the tournament organizers from the economic point of view as well. A well constructed schedule, comprising of diverse combinations of the home and away matches in a round robin tournament would keep the fans more attracted, resulting in turnouts in a large number in the stadiums and a considerable amount of revenue generated from the match tickets. Hence, an optimal solution to the problem is necessary from all respects; although it becomes progressively harder to identify the optimal solution with increasing number of teams. In this work, we have described how to solve the problem using Genetic algorithm and particle swarm optimization

    Towards prevention of sportsmen burnout : Formal analysis of sub-optimal tournament scheduling

    Get PDF
    Funding Statement: The authors are grateful to the Deanship of Scientific Research at King Saud University, Saudi Arabia for funding this work through the Vice Deanship of Scientific Research Chairs: Chair of Pervasive and Mobile Computing.Peer reviewedPublisher PD

    A Cooperative Local Search Method for Solving the Traveling Tournament Problem

    Get PDF
    Constrained optimization is the process of optimizing a certain objective function subject to a set of constraints. The goal is not necessarily to find the global optimum. We try to explore the search space more efficiently in order to find a good approximate solution. The obtained solution should verify the hard constraints that are required to be satisfied. In this paper, we propose a cooperative search method that handles optimality and feasibility separately. We take the traveling tournament problem (TTP) as a case study to show the applicability of the proposed idea. TTP is the problem of scheduling a double round-robin tournament that satisfies a set of related constraints and minimizes the total distance traveled by the teams. The proposed method for TTP consists of two main steps. In the first step, we ignore the optimization criterion. We reduce the search only to feasible solutions satisfying the problem's constraints. For this purpose, we use constraints programming model to ensure the feasibility of solutions. In the second step, we propose a stochastic local search method to handle the optimization criterion and find a good approximate solution that verifies the hard constraints. The overall method is evaluated on benchmarks and compared with other well-known techniques for TTP. The computational results are promising and show the effectiveness of the proposed idea for TTP

    Time Relaxed Round Robin Tournament and the NBA Scheduling Problem

    Get PDF
    This dissertation study was inspired by the National Basketball Association regular reason scheduling problem. NBA uses the time-relaxed round robin tournament format, which has drawn less research attention compared to the other scheduling formats. Besides NBA, the National Hockey League and many amateur leagues use the time-relaxed round robin tournament as well. This dissertation study is the first ever to examine the properties of general time-relaxed round robin tournaments. Single round, double round and multiple round time-relaxed round robin tournaments are defined. The integer programming and constraint programming models for those tournaments scheduling are developed and presented. Because of the complexity of this problem, several decomposition methods are presented as well. Traveling distance is an important factor in the tournament scheduling. Traveling tournament problem defined in the time constrained conditions has been well studied. This dissertation defines the novel problem of time-relaxed traveling tournament problem. Three algorithms has been developed and compared to address this problem. In addition, this dissertation study presents all major constraints for the NBA regular season scheduling. These constraints are grouped into three categories: structural, external and fairness. Both integer programming and constraint programming are used to model these constraints and the computation studies are presente

    PYCSP3: Modeling Combinatorial Constrained Problems in Python

    Full text link
    In this document, we introduce PYCSP33, a Python library that allows us to write models of combinatorial constrained problems in a simple and declarative way. Currently, with PyCSP33, you can write models of constraint satisfaction and optimization problems. More specifically, you can build CSP (Constraint Satisfaction Problem) and COP (Constraint Optimization Problem) models. Importantly, there is a complete separation between modeling and solving phases: you write a model, you compile it (while providing some data) in order to generate an XCSP3 instance (file), and you solve that problem instance by means of a constraint solver. In this document, you will find all that you need to know about PYCSP33, with more than 40 illustrative models

    Solving Challenging Real-World Scheduling Problems

    Get PDF
    This work contains a series of studies on the optimization of three real-world scheduling problems, school timetabling, sports scheduling and staff scheduling. These challenging problems are solved to customer satisfaction using the proposed PEAST algorithm. The customer satisfaction refers to the fact that implementations of the algorithm are in industry use. The PEAST algorithm is a product of long-term research and development. The first version of it was introduced in 1998. This thesis is a result of a five-year development of the algorithm. One of the most valuable characteristics of the algorithm has proven to be the ability to solve a wide range of scheduling problems. It is likely that it can be tuned to tackle also a range of other combinatorial problems. The algorithm uses features from numerous different metaheuristics which is the main reason for its success. In addition, the implementation of the algorithm is fast enough for real-world use.Siirretty Doriast

    Format and schedule proposals for a FIFA World Cup with 12 four-team groups

    Get PDF
    After the expansion of the FIFA World Cup from 32 to 48 teams starting from the 2026 edition, the initial proposal was to split the 48 national teams into 16 groups of three. Among other drawbacks, this proposal provides potential for collusion. Recently, after widespread criticism, FIFA officials signaled the possibility to re-discuss that proposal, pointing to a tournament with 12 groups of four teams. If this new proposal prevails, relevant questions arise about tournament design and schedule. In this paper, we propose tournament formats for a World Cup with 12 groups of four teams, considering a number of criteria, such as non-collusion, symmetry in rest days, no dead rubbers, and a tournament length of about one month. At the same time, our proposals attempt to adhere to the traditional format, with some nuances either in the group stage or in the knockout stage

    Scheduling a non-professional indoor football league : a tabu search based approach

    Get PDF
    This paper deals with a real-life scheduling problem of a non-professional indoor football league. The goal is to develop a schedule for a time-relaxed, double round-robin tournament which avoids close successions of games involving the same team in a limited period of time. This scheduling problem is interesting, because games are not planned in rounds. Instead, each team provides time slots in which they can play a home game, and time slots in which they cannot play at all. We present an integer programming formulation and a heuristic based on tabu search. The core component of this algorithm consists of solving a transportation problem, which schedules (or reschedules) all home games of a team. Our heuristic generates schedules with a quality comparable to those found with IP solvers, however with considerably less computational effort. These schedules were approved by the league organizers, and used in practice for the seasons 2009-2010 till 2016-2017

    Balancing the Game: Comparative Analysis of Single Heuristics and Adaptive Heuristic Approaches for Sports Scheduling Problem

    Get PDF
    Sport timetabling problems are Combinatorial Optimization problems which involve the creation of schedules that determine when and where teams compete against each other. One specific type of sports scheduling, the double round-robin (2RR) tournament, mandates that each team faces every other team twice, once at their home venue and once at the opponent’s. Despite the relatively small number of teams involved, the sheer volume of potential scheduling combinations has spurred researchers to employ various techniques to find efficient solutions for sports scheduling problems. In this thesis, we present a comparative analysis of single and adaptive heuristics designed to efficiently solve sports scheduling problems. Specifically, our focus is on constructing time-constrained double round-robin tournaments involving 16 to 20 teams, while adhering to hard constraints and minimizing penalties for soft constraints violations. The computational results demonstrate that our adaptive heuristic approach not only successfully finds feasible solutions for the majority of instances but also outperforms the single heuristics examined in this study.Master's Thesis in InformaticsINF399MAMN-INFMAMN-PRO
    • …
    corecore