958 research outputs found

    On the editing distance of graphs

    Get PDF
    An edge-operation on a graph GG is defined to be either the deletion of an existing edge or the addition of a nonexisting edge. Given a family of graphs G\mathcal{G}, the editing distance from GG to G\mathcal{G} is the smallest number of edge-operations needed to modify GG into a graph from G\mathcal{G}. In this paper, we fix a graph HH and consider Forb(n,H){\rm Forb}(n,H), the set of all graphs on nn vertices that have no induced copy of HH. We provide bounds for the maximum over all nn-vertex graphs GG of the editing distance from GG to Forb(n,H){\rm Forb}(n,H), using an invariant we call the {\it binary chromatic number} of the graph HH. We give asymptotically tight bounds for that distance when HH is self-complementary and exact results for several small graphs HH

    Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    Full text link
    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiolkowski states, entanglement witnesses and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.Comment: 8 pages, 1 figur

    Dynamic Chromatic Number of Regular Graphs

    Full text link
    A dynamic coloring of a graph GG is a proper coloring such that for every vertex vV(G)v\in V(G) of degree at least 2, the neighbors of vv receive at least 2 colors. It was conjectured [B. Montgomery. {\em Dynamic coloring of graphs}. PhD thesis, West Virginia University, 2001.] that if GG is a kk-regular graph, then χ2(G)χ(G)2\chi_2(G)-\chi(G)\leq 2. In this paper, we prove that if GG is a kk-regular graph with χ(G)4\chi(G)\geq 4, then χ2(G)χ(G)+α(G2)\chi_2(G)\leq \chi(G)+\alpha(G^2). It confirms the conjecture for all regular graph GG with diameter at most 2 and χ(G)4\chi(G)\geq 4. In fact, it shows that χ2(G)χ(G)1\chi_2(G)-\chi(G)\leq 1 provided that GG has diameter at most 2 and χ(G)4\chi(G)\geq 4. Moreover, we show that for any kk-regular graph GG, χ2(G)χ(G)6lnk+2\chi_2(G)-\chi(G)\leq 6\ln k+2. Also, we show that for any nn there exists a regular graph GG whose chromatic number is nn and χ2(G)χ(G)1\chi_2(G)-\chi(G)\geq 1. This result gives a negative answer to a conjecture of [A. Ahadi, S. Akbari, A. Dehghan, and M. Ghanbari. \newblock On the difference between chromatic number and dynamic chromatic number of graphs. \newblock {\em Discrete Math.}, In press].Comment: 8 page

    Grothendieck inequalities for semidefinite programs with rank constraint

    Get PDF
    Grothendieck inequalities are fundamental inequalities which are frequently used in many areas of mathematics and computer science. They can be interpreted as upper bounds for the integrality gap between two optimization problems: a difficult semidefinite program with rank-1 constraint and its easy semidefinite relaxation where the rank constrained is dropped. For instance, the integrality gap of the Goemans-Williamson approximation algorithm for MAX CUT can be seen as a Grothendieck inequality. In this paper we consider Grothendieck inequalities for ranks greater than 1 and we give two applications: approximating ground states in the n-vector model in statistical mechanics and XOR games in quantum information theory.Comment: 22 page

    Density theorems for bipartite graphs and related Ramsey-type results

    Full text link
    In this paper, we present several density-type theorems which show how to find a copy of a sparse bipartite graph in a graph of positive density. Our results imply several new bounds for classical problems in graph Ramsey theory and improve and generalize earlier results of various researchers. The proofs combine probabilistic arguments with some combinatorial ideas. In addition, these techniques can be used to study properties of graphs with a forbidden induced subgraph, edge intersection patterns in topological graphs, and to obtain several other Ramsey-type statements
    corecore