66,857 research outputs found

    The Topology of Wireless Communication

    Full text link
    In this paper we study the topological properties of wireless communication maps and their usability in algorithmic design. We consider the SINR model, which compares the received power of a signal at a receiver against the sum of strengths of other interfering signals plus background noise. To describe the behavior of a multi-station network, we use the convenient representation of a \emph{reception map}. In the SINR model, the resulting \emph{SINR diagram} partitions the plane into reception zones, one per station, and the complementary region of the plane where no station can be heard. We consider the general case where transmission energies are arbitrary (or non-uniform). Under that setting, the reception zones are not necessarily convex or even connected. This poses the algorithmic challenge of designing efficient point location techniques as well as the theoretical challenge of understanding the geometry of SINR diagrams. We achieve several results in both directions. We establish a form of weaker convexity in the case where stations are aligned on a line. In addition, one of our key results concerns the behavior of a (d+1)(d+1)-dimensional map. Specifically, although the dd-dimensional map might be highly fractured, drawing the map in one dimension higher "heals" the zones, which become connected. In addition, as a step toward establishing a weaker form of convexity for the dd-dimensional map, we study the interference function and show that it satisfies the maximum principle. Finally, we turn to consider algorithmic applications, and propose a new variant of approximate point location.Comment: 64 pages, appeared in STOC'1

    Topological Interference Management with Alternating Connectivity

    Full text link
    The topological interference management problem refers to the study of the capacity of partially connected linear (wired and wireless) communication networks with no channel state information at the transmitters (no CSIT) beyond the network topology, i.e., a knowledge of which channel coefficients are zero (weaker than the noise floor in the wireless case). While the problem is originally studied with fixed topology, in this work we explore the implications of varying connectivity, through a series of simple and conceptually representative examples. Specifically, we highlight the synergistic benefits of coding across alternating topologies

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    An Energy Balanced Dynamic Topology Control Algorithm for Improved Network Lifetime

    Full text link
    In wireless sensor networks, a few sensor nodes end up being vulnerable to potentially rapid depletion of the battery reserves due to either their central location or just the traffic patterns generated by the application. Traditional energy management strategies, such as those which use topology control algorithms, reduce the energy consumed at each node to the minimum necessary. In this paper, we use a different approach that balances the energy consumption at each of the nodes, thus increasing the functional lifetime of the network. We propose a new distributed dynamic topology control algorithm called Energy Balanced Topology Control (EBTC) which considers the actual energy consumed for each transmission and reception to achieve the goal of an increased functional lifetime. We analyze the algorithm's computational and communication complexity and show that it is equivalent or lower in complexity to other dynamic topology control algorithms. Using an empirical model of energy consumption, we show that the EBTC algorithm increases the lifetime of a wireless sensor network by over 40% compared to the best of previously known algorithms

    Topology Control Algorithm considering Antenna Radiation Pattern in Three-Dimensional Wireless Sensor Networks

    Get PDF
    Topology control is a key issue of wireless sensor network to reduce energy consumption and communication collision. Topology control algorithms in three-dimensional space have been proposed by modifying existing two-dimensional algorithms. These algorithms are based on the theoretical assumption that transmission power is radiated equally to the all directions by using isotropic antenna model. However, isotropic antenna does not exist, which is hypothetical antenna to compare the real antenna performance. In the real network, dipole antenna is applied, and because of the radiation pattern, performance of topology control algorithm is degraded. We proposed local remapping algorithm to solve the problem and applied it to existing topology control algorithms. Simulation results show that our algorithm increases performance of existing algorithms and reduces power consumption

    The Bus Goes Wireless: Routing-Free Data Collection with QoS Guarantees in Sensor Networks

    Get PDF
    Abstract—We present the low-power wireless bus (LWB), a new communication paradigm for QoS-aware data collection in lowpower sensor networks. The LWB maps all communication onto network floods by using Glossy, an efficient flooding architecture for wireless sensor networks. Therefore, unlike current solutions, the LWB requires no information of the network topology, and inherently supports networks with mobile nodes and multiple data sinks. A LWB prototype implemented in Contiki guarantees bounded end-to-end communication delay and duplicate-free, inorder packet delivery—key QoS requirements in many control and mission-critical applications. Experiments on two testbeds demonstrate that the LWB prototype outperforms state-of-theart data collection and link layer protocols, in terms of reliability and energy efficiency. For instance, we measure an average radio duty cycle of 1.69 % and an overall data yield of 99.97 % in a typical data collection scenario with 85 sensor nodes on Twist. I
    corecore