1,122 research outputs found

    Performance Enhancements for Asynchronous Random Access Protocols over Satellite

    Get PDF
    In this paper, a novel enhancement of the well known ALOHA random access mechanism is presented which largely extends the achievable throughput compared to traditional ALOHA and provides significantly lower packet loss rates. The novel mechanism, called Contention Resolution - ALOHA (CRA), is based on transmitting multiple replicas of a packet in an unslotted ALOHA system and applying interference cancellation techniques. In this paper the methodology for this new random access technique is presented, also w.r.t. existing Interference Cancellation (IC) techniques. Moreover numerical results for performance comparison with state of the art random access mechanisms, such as Contention Resolution Diversity Slotted ALOHA (CRDSA) are provided. Finally the benefit of taking strong forward error correcting codes for the performance of CRA is shown

    Open-Loop Spatial Multiplexing and Diversity Communications in Ad Hoc Networks

    Full text link
    This paper investigates the performance of open-loop multi-antenna point-to-point links in ad hoc networks with slotted ALOHA medium access control (MAC). We consider spatial multiplexing transmission with linear maximum ratio combining and zero forcing receivers, as well as orthogonal space time block coded transmission. New closed-form expressions are derived for the outage probability, throughput and transmission capacity. Our results demonstrate that both the best performing scheme and the optimum number of transmit antennas depend on different network parameters, such as the node intensity and the signal-to-interference-and-noise ratio operating value. We then compare the performance to a network consisting of single-antenna devices and an idealized fully centrally coordinated MAC. These results show that multi-antenna schemes with a simple decentralized slotted ALOHA MAC can outperform even idealized single-antenna networks in various practical scenarios.Comment: 51 pages, 19 figures, submitted to IEEE Transactions on Information Theor

    Slotted Aloha for Networked Base Stations

    Full text link
    We study multiple base station, multi-access systems in which the user-base station adjacency is induced by geographical proximity. At each slot, each user transmits (is active) with a certain probability, independently of other users, and is heard by all base stations within the distance rr. Both the users and base stations are placed uniformly at random over the (unit) area. We first consider a non-cooperative decoding where base stations work in isolation, but a user is decoded as soon as one of its nearby base stations reads a clean signal from it. We find the decoding probability and quantify the gains introduced by multiple base stations. Specifically, the peak throughput increases linearly with the number of base stations mm and is roughly m/4m/4 larger than the throughput of a single-base station that uses standard slotted Aloha. Next, we propose a cooperative decoding, where the mutually close base stations inform each other whenever they decode a user inside their coverage overlap. At each base station, the messages received from the nearby stations help resolve collisions by the interference cancellation mechanism. Building from our exact formulas for the non-cooperative case, we provide a heuristic formula for the cooperative decoding probability that reflects well the actual performance. Finally, we demonstrate by simulation significant gains of cooperation with respect to the non-cooperative decoding.Comment: conference; submitted on Dec 15, 201
    • 

    corecore