13 research outputs found

    A simple and sharper proof of the hypergraph Moore bound

    Full text link
    The hypergraph Moore bound is an elegant statement that characterizes the extremal trade-off between the girth - the number of hyperedges in the smallest cycle or even cover (a subhypergraph with all degrees even) and size - the number of hyperedges in a hypergraph. For graphs (i.e., 22-uniform hypergraphs), a bound tight up to the leading constant was proven in a classical work of Alon, Hoory and Linial [AHL02]. For hypergraphs of uniformity k>2k>2, an appropriate generalization was conjectured by Feige [Fei08]. The conjecture was settled up to an additional log4k+1n\log^{4k+1} n factor in the size in a recent work of Guruswami, Kothari and Manohar [GKM21]. Their argument relies on a connection between the existence of short even covers and the spectrum of a certain randomly signed Kikuchi matrix. Their analysis, especially for the case of odd kk, is significantly complicated. In this work, we present a substantially simpler and shorter proof of the hypergraph Moore bound. Our key idea is the use of a new reweighted Kikuchi matrix and an edge deletion step that allows us to drop several involved steps in [GKM21]'s analysis such as combinatorial bucketing of rows of the Kikuchi matrix and the use of the Schudy-Sviridenko polynomial concentration. Our simpler proof also obtains tighter parameters: in particular, the argument gives a new proof of the classical Moore bound of [AHL02] with no loss (the proof in [GKM21] loses a log3n\log^3 n factor), and loses only a single logarithmic factor for all k>2k>2-uniform hypergraphs. As in [GKM21], our ideas naturally extend to yield a simpler proof of the full trade-off for strongly refuting smoothed instances of constraint satisfaction problems with similarly improved parameters

    Explicit near-Ramanujan graphs of every degree

    Full text link
    For every constant d3d \geq 3 and ϵ>0\epsilon > 0, we give a deterministic poly(n)\mathrm{poly}(n)-time algorithm that outputs a dd-regular graph on Θ(n)\Theta(n) vertices that is ϵ\epsilon-near-Ramanujan; i.e., its eigenvalues are bounded in magnitude by 2d1+ϵ2\sqrt{d-1} + \epsilon (excluding the single trivial eigenvalue of~dd).Comment: 26 page
    corecore