2,521 research outputs found

    Secure and robust multi-constrained QoS aware routing algorithm for VANETs

    Get PDF
    Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In Vehicular Ad hoc Networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the Ant Colony Optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented Evolving Graph (VoEG) model to perform plausibility checks on the exchanged routing control messages among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service

    Compress-store on blockchain: a decentralized data processing and immutable storage for multimedia streaming

    Get PDF
    Decentralization for data storage is a challenging problem for blockchain-based solutions as the blocksize plays a key role for scalability. In addition, specific requirements of multimedia data call for various changes in the blockchain technology internals. Considering one of the most popular applications of secure multimedia streaming, i.e., video surveillance, it is not clear how to judiciously encode incentivization, immutability, and compression into a viable ecosystem. In this study, we provide a genuine scheme that achieves this encoding for a video surveillance application. The proposed scheme provides a novel integration of data compression, immutable off-chain data storage using a new consensus protocol namely, Proof-of-WorkStore (PoWS) in order to enable fully useful work to be performed by the miner nodes of the network. The proposed idea is the first step towards achieving greener application of a blockchain-based environment to the video storage business that utilizes system resources efficiently.WOS:000773171200001Scopus - Affiliation ID: 60105072Science Citation Index ExpandedQ2 - Q4Article; Early AccessUluslararası işbirliği ile yapılan - EVETNisan2022YÖK - 2021-22Mar

    Towards Tamper-Evident Storage on Patterned Media

    Get PDF
    We propose a tamper-evident storage system based on probe storage with a patterned magnetic medium. This medium supports normal read/write operations by out-of-plane magnetisation of individual magnetic dots. We report on measurements showing that in principle the medium also supports a separate class of write-once operation that destroys the out-of-plane magnetisation property of the dots irreversibly by precise local heating. We discuss the main issues of designing a tamper-evident storage device and file system using the properties of the medium

    A Blockchain Framework for Patient-Centered Health Records and Exchange (HealthChain): Evaluation and Proof-of-Concept Study

    Get PDF
    Background: Blockchain has the potential to disrupt the current modes of patient data access, accumulation, contribution, exchange, and control. Using interoperability standards, smart contracts, and cryptographic identities, patients can securely exchange data with providers and regulate access. The resulting comprehensive, longitudinal medical records can significantly improve the cost and quality of patient care for individuals and populations alike. Objective: This work presents HealthChain, a novel patient-centered blockchain framework. The intent is to bolster patient engagement, data curation, and regulated dissemination of accumulated information in a secure, interoperable environment. A mixed-block blockchain is proposed to support immutable logging and redactable patient blocks. Patient data are generated and exchanged through Health Level-7 Fast Healthcare Interoperability Resources, allowing seamless transfer with compliant systems. In addition, patients receive cryptographic identities in the form of public and private key pairs. Public keys are stored in the blockchain and are suitable for securing and verifying transactions. Furthermore, the envisaged system uses proxy re-encryption (PRE) to share information through revocable, smart contracts, ensuring the preservation of privacy and confidentiality. Finally, several PRE improvements are offered to enhance performance and security. Methods: The framework was formulated to address key barriers to blockchain adoption in health care, namely, information security, interoperability, data integrity, identity validation, and scalability. It supports 16 configurations through the manipulation of 4 modes. An open-source, proof-of-concept tool was developed to evaluate the performance of the novel patient block components and system configurations. To demonstrate the utility of the proposed framework and evaluate resource consumption, extensive testing was performed on each of the 16 configurations over a variety of scenarios involving a variable number of existing and imported records. Results: The results indicate several clear high-performing, low-bandwidth configurations, although they are not the strongest cryptographically. Of the strongest models, one’s anticipated cumulative record size is shown to influence the selection. Although the most efficient algorithm is ultimately user specific, Advanced Encryption Standard–encrypted data with static keys, incremental server storage, and no additional server-side encryption are the fastest and least bandwidth intensive, whereas proxy re-encrypted data with dynamic keys, incremental server storage, and additional server-side encryption are the best performing of the strongest configurations. Conclusions: Blockchain is a potent and viable technology for patient-centered access to and exchange of health information. By integrating a structured, interoperable design with patient-accumulated and generated data shared through smart contracts into a universally accessible blockchain, HealthChain presents patients and providers with access to consistent and comprehensive medical records. Challenges addressed include data security, interoperability, block storage, and patient-administered data access, with several configurations emerging for further consideration regarding speed and security

    A Review of IoT Security and Privacy Using Decentralized Blockchain Techniques

    Get PDF
    IoT security is one of the prominent issues that has gained significant attention among the researchers in recent times. The recent advancements in IoT introduces various critical security issues and increases the risk of privacy leakage of IoT data. Implementation of Blockchain can be a potential solution for the security issues in IoT. This review deeply investigates the security threats and issues in IoT which deteriorates the effectiveness of IoT systems. This paper presents a perceptible description of the security threats, Blockchain based solutions, security characteristics and challenges introduced during the integration of Blockchain with IoT. An analysis of different consensus protocols, existing security techniques and evaluation parameters are discussed in brief. In addition, the paper also outlines the open issues and highlights possible research opportunities which can be beneficial for future research
    corecore