265,832 research outputs found

    The t-stability number of a random graph

    Full text link
    Given a graph G = (V,E), a vertex subset S is called t-stable (or t-dependent) if the subgraph G[S] induced on S has maximum degree at most t. The t-stability number of G is the maximum order of a t-stable set in G. We investigate the typical values that this parameter takes on a random graph on n vertices and edge probability equal to p. For any fixed 0 < p < 1 and fixed non-negative integer t, we show that, with probability tending to 1 as n grows, the t-stability number takes on at most two values which we identify as functions of t, p and n. The main tool we use is an asymptotic expression for the expected number of t-stable sets of order k. We derive this expression by performing a precise count of the number of graphs on k vertices that have maximum degree at most k. Using the above results, we also obtain asymptotic bounds on the t-improper chromatic number of a random graph (this is the generalisation of the chromatic number, where we partition of the vertex set of the graph into t-stable sets).Comment: 25 pages; v2 has 30 pages and is identical to the journal version apart from formatting and a minor amendment to Lemma 8 (and its proof on p. 21

    Strongly reinforced P\'olya urns with graph-based competition

    Get PDF
    We introduce a class of reinforcement models where, at each time step tt, one first chooses a random subset AtA_t of colours (independent of the past) from nn colours of balls, and then chooses a colour ii from this subset with probability proportional to the number of balls of colour ii in the urn raised to the power α>1\alpha>1. We consider stability of equilibria for such models and establish the existence of phase transitions in a number of examples, including when the colours are the edges of a graph, a context which is a toy model for the formation and reinforcement of neural connections.Comment: 32 pages, 5 figure

    Synchronization in random networks with given expected degree sequences

    Get PDF
    Synchronization in random networks with given expected degree sequences is studied. We also investigate in details the synchronization in networks whose topology is described by classical random graphs, power-law random graphs and hybrid graphs when N goes to infinity. In particular, we show that random graphs almost surely synchronize. We also show that adding small number of global edges to a local graph makes the corresponding hybrid graph to synchroniz

    Building Damage-Resilient Dominating Sets in Complex Networks against Random and Targeted Attacks

    Full text link
    We study the vulnerability of dominating sets against random and targeted node removals in complex networks. While small, cost-efficient dominating sets play a significant role in controllability and observability of these networks, a fixed and intact network structure is always implicitly assumed. We find that cost-efficiency of dominating sets optimized for small size alone comes at a price of being vulnerable to damage; domination in the remaining network can be severely disrupted, even if a small fraction of dominator nodes are lost. We develop two new methods for finding flexible dominating sets, allowing either adjustable overall resilience, or dominating set size, while maximizing the dominated fraction of the remaining network after the attack. We analyze the efficiency of each method on synthetic scale-free networks, as well as real complex networks

    On the Stability of Community Detection Algorithms on Longitudinal Citation Data

    Full text link
    There are fundamental differences between citation networks and other classes of graphs. In particular, given that citation networks are directed and acyclic, methods developed primarily for use with undirected social network data may face obstacles. This is particularly true for the dynamic development of community structure in citation networks. Namely, it is neither clear when it is appropriate to employ existing community detection approaches nor is it clear how to choose among existing approaches. Using simulated data, we attempt to clarify the conditions under which one should use existing methods and which of these algorithms is appropriate in a given context. We hope this paper will serve as both a useful guidepost and an encouragement to those interested in the development of more targeted approaches for use with longitudinal citation data.Comment: 17 pages, 7 figures, presenting at Applications of Social Network Analysis 2009, ETH Zurich Edit, August 17, 2009: updated abstract, figures, text clarification

    The stability of a graph partition: A dynamics-based framework for community detection

    Full text link
    Recent years have seen a surge of interest in the analysis of complex networks, facilitated by the availability of relational data and the increasingly powerful computational resources that can be employed for their analysis. Naturally, the study of real-world systems leads to highly complex networks and a current challenge is to extract intelligible, simplified descriptions from the network in terms of relevant subgraphs, which can provide insight into the structure and function of the overall system. Sparked by seminal work by Newman and Girvan, an interesting line of research has been devoted to investigating modular community structure in networks, revitalising the classic problem of graph partitioning. However, modular or community structure in networks has notoriously evaded rigorous definition. The most accepted notion of community is perhaps that of a group of elements which exhibit a stronger level of interaction within themselves than with the elements outside the community. This concept has resulted in a plethora of computational methods and heuristics for community detection. Nevertheless a firm theoretical understanding of most of these methods, in terms of how they operate and what they are supposed to detect, is still lacking to date. Here, we will develop a dynamical perspective towards community detection enabling us to define a measure named the stability of a graph partition. It will be shown that a number of previously ad-hoc defined heuristics for community detection can be seen as particular cases of our method providing us with a dynamic reinterpretation of those measures. Our dynamics-based approach thus serves as a unifying framework to gain a deeper understanding of different aspects and problems associated with community detection and allows us to propose new dynamically-inspired criteria for community structure.Comment: 3 figures; published as book chapte
    corecore