199 research outputs found

    Modified Linear Programming and Class 0 Bounds for Graph Pebbling

    Full text link
    Given a configuration of pebbles on the vertices of a connected graph GG, a \emph{pebbling move} removes two pebbles from some vertex and places one pebble on an adjacent vertex. The \emph{pebbling number} of a graph GG is the smallest integer kk such that for each vertex vv and each configuration of kk pebbles on GG there is a sequence of pebbling moves that places at least one pebble on vv. First, we improve on results of Hurlbert, who introduced a linear optimization technique for graph pebbling. In particular, we use a different set of weight functions, based on graphs more general than trees. We apply this new idea to some graphs from Hurlbert's paper to give improved bounds on their pebbling numbers. Second, we investigate the structure of Class 0 graphs with few edges. We show that every nn-vertex Class 0 graph has at least 53n−113\frac53n - \frac{11}3 edges. This disproves a conjecture of Blasiak et al. For diameter 2 graphs, we strengthen this lower bound to 2n−52n - 5, which is best possible. Further, we characterize the graphs where the bound holds with equality and extend the argument to obtain an identical bound for diameter 2 graphs with no cut-vertex.Comment: 19 pages, 8 figure

    Width and size of regular resolution proofs

    Full text link
    This paper discusses the topic of the minimum width of a regular resolution refutation of a set of clauses. The main result shows that there are examples having small regular resolution refutations, for which any regular refutation must contain a large clause. This forms a contrast with corresponding results for general resolution refutations.Comment: The article was reformatted using the style file for Logical Methods in Computer Scienc

    Pebbling and Branching Programs Solving the Tree Evaluation Problem

    Full text link
    We study restricted computation models related to the Tree Evaluation Problem}. The TEP was introduced in earlier work as a simple candidate for the (*very*) long term goal of separating L and LogDCFL. The input to the problem is a rooted, balanced binary tree of height h, whose internal nodes are labeled with binary functions on [k] = {1,...,k} (each given simply as a list of k^2 elements of [k]), and whose leaves are labeled with elements of [k]. Each node obtains a value in [k] equal to its binary function applied to the values of its children, and the output is the value of the root. The first restricted computation model, called Fractional Pebbling, is a generalization of the black/white pebbling game on graphs, and arises in a natural way from the search for good upper bounds on the size of nondeterministic branching programs (BPs) solving the TEP - for any fixed h, if the binary tree of height h has fractional pebbling cost at most p, then there are nondeterministic BPs of size O(k^p) solving the height h TEP. We prove a lower bound on the fractional pebbling cost of d-ary trees that is tight to within an additive constant for each fixed d. The second restricted computation model we study is a semantic restriction on (non)deterministic BPs solving the TEP - Thrifty BPs. Deterministic (resp. nondeterministic) thrifty BPs suffice to implement the best known algorithms for the TEP, based on black (resp. fractional) pebbling. In earlier work, for each fixed h a lower bound on the size of deterministic thrifty BPs was proved that is tight for sufficiently large k. We give an alternative proof that achieves the same bound for all k. We show the same bound still holds in a less-restricted model, and also that gradually weaker lower bounds can be obtained for gradually weaker restrictions on the model.Comment: Written as one of the requirements for my MSc. 29 pages, 6 figure

    Reversible Simulation of Irreversible Computation by Pebble Games

    Get PDF
    Reversible simulation of irreversible algorithms is analyzed in the stylized form of a `reversible' pebble game. While such simulations incur little overhead in additional computation time, they use a large amount of additional memory space during the computation. The reacheable reversible simulation instantaneous descriptions (pebble configurations) are characterized completely. As a corollary we obtain the reversible simulation by Bennett and that among all simulations that can be modelled by the pebble game, Bennett's simulation is optimal in that it uses the least auxiliary space for the greatest number of simulated steps. One can reduce the auxiliary storage overhead incurred by the reversible simulation at the cost of allowing limited erasing leading to an irreversibility-space tradeoff. We show that in this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. We show that the reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.Comment: 11 pages, Latex, Submitted to Physica
    • …
    corecore