5,665 research outputs found

    Generic closed loop controller for power regulation in dual active bridge DC-DC converter with current stress minimization

    Get PDF
    This paper presents a comprehensive and generalized analysis of the bidirectional dual active bridge (DAB) DC/DC converter using triple phase shift (TPS) control to enable closed loop power regulation while minimizing current stress. The key new achievements are: a generic analysis in terms of possible conversion ratios/converter voltage gains (i.e. Buck/Boost/Unity), per unit based equations regardless of DAB ratings, and a new simple closed loop controller implementable in real time to meet desired power transfer regulation at minimum current stress. Per unit based analytical expressions are derived for converter AC RMS current as well as power transferred. An offline particle swarm optimization (PSO) method is used to obtain an extensive set of TPS ratios for minimizing the RMS current in the entire bidirectional power range of - 1 to 1 per unit. The extensive set of results achieved from PSO presents a generic data pool which is carefully analyzed to derive simple useful relations. Such relations enabled a generic closed loop controller design that can be implemented in real time avoiding the extensive computational capacity that iterative optimization techniques require. A detailed Simulink DAB switching model is used to validate precision of the proposed closed loop controller under various operating conditions. An experimental prototype also substantiates the results achieved

    Reactive power minimization of dual active bridge DC/DC converter with triple phase shift control using neural network

    Get PDF
    Reactive power flow increases dual active bridge (DAB) converter RMS current leading to an increase in conduction losses especially in high power applications. This paper proposes a new optimized triple phase shift (TPS) switching algorithm that minimizes the total reactive power of the converter. The algorithm iteratively searches for TPS control variables that satisfy the desired active power flow while selecting the operating mode with minimum reactive power consumption. This is valid for the whole range of converter operation. The iterative algorithm is run offline for the entire active power range (-1pu to 1pu) and the resulting data is used to train an open loop artificial neural network controller to reduce computational time and memory allocation necessary to store the data generated. To validate the accuracy of the proposed controller, a 500-MW 300kV/100kV DAB model is simulated in Matlab/Simulink, as a potential application for DAB in DC grids

    Analysis of AC link topologies in non-isolated DC/DC triple active bridge converter for current stress minimization

    Get PDF
    This paper presents analysis of the non-isolated DC/DC triple active bridge (TAB) converter under various purely inductor-based AC link topologies. The objective of the analysis is to find the topology that incorporates the least value of the AC link inductors which leads to reduced converter footprint in addition to minimum internal current stresses. Modelling of the TAB under each of the different topologies is presented in per unit expressions of power transfer and reactive power assuming fundamental harmonic analysis. The power expressions are used to calculate the inductor values necessary to achieve same rated power transfer of Dual Active Bridge (DAB) converter for the sake of standardizing comparison. On this basis, the topology requiring the least value of interface inductors, hence lowest footprint, is identified. Furthermore, based on phase shift control, particle swarm optimization (PSO) is used to calculate optimal phase shift ratios in each of the proposed topologies to minimize reactive power loss (hence current stress). The topology with minimum stresses is therefore identified and the results are substantiated using a Matlab-Simulink model to verify the theoretical analysis

    Minimum-Reactive-Power Scheme of Dual Active Bridge DC-DC Converter With 3-Level Modulated Phase-Shift Control

    Get PDF

    Development of Multiport Single Stage Bidirectional Converter for Photovoltaic and Energy Storage Integration

    Get PDF
    The energy market is on the verge of a paradigm shift as the emergence of renewable energy sources over traditional fossil fuel based energy supply has started to become cost competitive and viable. Unfortunately, most of the attractive renewable sources come with inherent challenges such as: intermittency and unreliability. This is problematic for today\u27s stable, day ahead market based power system. Fortunately, it is well established that energy storage devices can compensate for renewable sources shortcomings. This makes the integration of energy storage with the renewable energy sources, one of the biggest challenges of modern distributed generation solution. This work discusses, the current state of the art of power conversion systems that integrate photovoltaic and battery energy storage systems. It is established that the control of bidirectional power flow to the energy storage device can be improved by optimizing its modulation and control. Traditional multistage conversion systems offers the required power delivery options, but suffers from a rigid power management system, reduced efficiency and increased cost. To solve this problem, a novel three port converter was developed which allows bidirectional power flow between the battery and the load, and unidirectional power flow from the photovoltaic port. The individual two-port portions of the three port converter were optimized in terms of modulation scheme. This leads to optimization of the proposed converter, for all possible power flow modes. In the second stage of the project, the three port converter was improved both in terms of cost and efficiency by proposing an improved topology. The improved three port converter has reduced functionality but is a perfect fit for the targeted microinverter application. The overall control system was designed to achieve improved reference tracking for power management and output AC voltage control. The bidirectional converter and both the proposed three port converters were analyzed theoretically. Finally, experimental prototypes were built to verify their performance

    An Optimized Dual Active Bridge Converter for EV On-board Charger

    Get PDF

    Geometry optimization and characterization of three-phase medium frequency transformer for 10kVA isolated DC-DC converter

    Get PDF
    Three-phase Dual Active Bridge converter is advisable for the High-power DC-DC conversion system. In the ac link, galvanically isolated transformer operated at a medium frequency range provides stepping up or down of the secondary bridge voltage. This paper provides a magnetic design optimization of the medium frequency transformer for maximizing its efficiency when excited by a non-sinusoidal waveform. In this paper, a mathematical design of a 10kVA non-sinusoidal transformer had been developed and validated using two-dimensional (2D) transient finite element analysis (FEA). The set of selected design variables is defined in order to enhance the power density and efficiency of the targeted transformer and an optimization is carried out. Finally, a 10kVA transformer is prototyped and the results of core losses for nonsinusoidal excitation is confirmed experimentally

    Power Interface Design and System Stability Analysis for 400 V DC-Powered Data Centers

    Get PDF
    The demands of high performance cloud computation and internet services have increased in recent decades. These demands have driven the expansion of existing data centers and the construction of new data centers. The high costs of data center downtime are pushing designers to provide high reliability power supplies. Thus, there are significant research questions and challenges to design efficient and environmentally friendly data centers with address increasing energy prices and distributed energy developments. This dissertation work aims to study and investigate the suitable technologies of power interface and system level configuration for high efficiency and reliable data centers. A 400 V DC-powered data center integrated with solar power and hybrid energy storage is proposed to reduce the power loss and cable cost in data centers. A cascaded totem-pole bridgeless PFC converter to convert grid ac voltage to the 400 V dc voltage is proposed in this work. Three main control strategies are developed for the power converters. First, a model predictive control is developed for the cascaded totem-pole bridgeless PFC converter. This control provides stable transient performance and high power efficiency. Second, a power loss model based dual-phase-shift control is applied for the efficiency improvement of dual-active bridge converter. Third, an optimized maximum power point tracking (MPPT) control for solar power and a hybrid energy storage unit (HESU) control are given in this research work. The HESU consists of battery and ultracapacitor packs. The ultracapacitor can improve the battery lifetime and reduce any transients affecting grid side operation. The large signal model of a typical solar power integrated datacenter is built to analyze the system stability with various conditions. The MATLAB/Simulinkâ„¢-based simulations are used to identify the stable region of the data center power supply. This can help to analyze the sensitivity of the circuit parameters, which include the cable inductance, resistance, and dc bus capacitance. This work analyzes the system dynamic response under different operating conditions to determine the stability of the dc bus voltage. The system stability under different percentages of solar power and hybrid energy storage integrated in the data center are also investigated

    Power Interface Design and System Stability Analysis for 400 V DC-Powered Data Centers

    Get PDF
    The demands of high performance cloud computation and internet services have increased in recent decades. These demands have driven the expansion of existing data centers and the construction of new data centers. The high costs of data center downtime are pushing designers to provide high reliability power supplies. Thus, there are significant research questions and challenges to design efficient and environmentally friendly data centers with address increasing energy prices and distributed energy developments. This dissertation work aims to study and investigate the suitable technologies of power interface and system level configuration for high efficiency and reliable data centers. A 400 V DC-powered data center integrated with solar power and hybrid energy storage is proposed to reduce the power loss and cable cost in data centers. A cascaded totem-pole bridgeless PFC converter to convert grid ac voltage to the 400 V dc voltage is proposed in this work. Three main control strategies are developed for the power converters. First, a model predictive control is developed for the cascaded totem-pole bridgeless PFC converter. This control provides stable transient performance and high power efficiency. Second, a power loss model based dual-phase-shift control is applied for the efficiency improvement of dual-active bridge converter. Third, an optimized maximum power point tracking (MPPT) control for solar power and a hybrid energy storage unit (HESU) control are given in this research work. The HESU consists of battery and ultracapacitor packs. The ultracapacitor can improve the battery lifetime and reduce any transients affecting grid side operation. The large signal model of a typical solar power integrated datacenter is built to analyze the system stability with various conditions. The MATLAB/Simulinkâ„¢-based simulations are used to identify the stable region of the data center power supply. This can help to analyze the sensitivity of the circuit parameters, which include the cable inductance, resistance, and dc bus capacitance. This work analyzes the system dynamic response under different operating conditions to determine the stability of the dc bus voltage. The system stability under different percentages of solar power and hybrid energy storage integrated in the data center are also investigated

    An improved closed loop hybrid phase shift controller for dual active bridge converter

    Get PDF
    In this paper, a new closed loop hybrid phase shift control is proposed for dual active bridge (DAB) converter with variable input voltage. The extended phase shift (EPS) control is applied when load gets heavy enough and the secondary side phase shift angle decreases to zero. When this modified DAB converter operates at light loads, the triple phase shift (TPS) modulation method is applied, and the added control freedom is the secondary phase shift angle between the two-secondary side switching legs. The hybrid phase shift control (HPS) scheme is a combination of EPS and TPS modulations, and it provides a very simple closed form implementation for the primary and secondary side phase shift angles. Depending on the application by changing the phase shift angles we can achieve Buck or Boost operation. A characteristic table feedback control method has been used for closed loop operation. By using 1D look up table the proposed DAB converter provides constant 400V for any given input voltage
    • …
    corecore