11 research outputs found

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    One-Variable Fragments of First-Order Many-Valued Logics

    Get PDF
    In this thesis we study one-variable fragments of first-order logics. Such a one-variable fragment consists of those first-order formulas that contain only unary predicates and a single variable. These fragments can be viewed from a modal perspective by replacing the universal and existential quantifier with a box and diamond modality, respectively, and the unary predicates with corresponding propositional variables. Under this correspondence, the one-variable fragment of first-order classical logic famously corresponds to the modal logic S5. This thesis explores some such correspondences between first-order and modal logics. Firstly, we study first-order intuitionistic logics based on linear intuitionistic Kripke frames. We show that their one-variable fragments correspond to particular modal Gödel logics, defined over many-valued S5-Kripke frames. For a large class of these logics, we prove the validity problem to be decidable, even co-NP-complete. Secondly, we investigate the one-variable fragment of first-order Abelian logic, i.e., the first-order logic based on the ordered additive group of the reals. We provide two completeness results with respect to Hilbert-style axiomatizations: one for the one-variable fragment, and one for the one-variable fragment that does not contain any lattice connectives. Both these fragments are proved to be decidable. Finally, we launch a much broader algebraic investigation into one-variable fragments. We turn to the setting of first-order substructural logics (with the rule of exchange). Inspired by work on, among others, monadic Boolean algebras and monadic Heyting algebras, we define monadic commutative pointed residuated lattices as a first (algebraic) investigation into one-variable fragments of this large class of first-order logics. We prove a number of properties for these newly defined algebras, including a characterization in terms of relatively complete subalgebras as well as a characterization of their congruences

    Algorithmic correspondence and completeness in modal logic

    Get PDF
    Abstract This thesis takes an algorithmic perspective on the correspondence between modal and hybrid logics on the one hand, and first-order logic on the other. The canonicity of formulae, and by implication the completeness of logics, is simultaneously treated. Modal formulae define second-order conditions on frames which, in some cases, are equiv- alently reducible to first-order conditions. Modal formulae for which the latter is possible are called elementary. As is well known, it is algorithmically undecidable whether a given modal formula defines a first-order frame condition or not. Hence, any attempt at delineating the class of elementary modal formulae by means of a decidable criterium can only consti- tute an approximation of this class. Syntactically specified such approximations include the classes of Sahlqvist and inductive formulae. The approximations we consider take the form of algorithms. We develop an algorithm called SQEMA, which computes first-order frame equivalents for modal formulae, by first transforming them into pure formulae in a reversive hybrid language. It is shown that this algorithm subsumes the classes of Sahlqvist and inductive formulae, and that all formulae on which it succeeds are d-persistent (canonical), and hence axiomatize complete normal modal logics. SQEMA is extended to polyadic languages, and it is shown that this extension succeeds on all polyadic inductive formulae. The canonicity result is also transferred. SQEMA is next extended to hybrid languages. Persistence results with respect to discrete general frames are obtained for certain of these extensions. The notion of persistence with respect to strongly descriptive general frames is investigated, and some syntactic sufficient conditions for such persistence are obtained. SQEMA is adapted to guarantee the persistence with respect to strongly descriptive frames of the hybrid formulae on which it succeeds, and hence the completeness of the hybrid logics axiomatized with these formulae. New syntactic classes of elementary and canonical hybrid formulae are obtained. Semantic extensions of SQEMA are obtained by replacing the syntactic criterium of nega- tive/positive polarity, used to determine the applicability of a certain transformation rule, by its semantic correlate—monotonicity. In order to guarantee the canonicity of the formulae on which the thus extended algorithm succeeds, syntactically correct equivalents for monotone formulae are needed. Different version of Lyndon’s monotonicity theorem, which guarantee the existence of these equivalents, are proved. Constructive versions of these theorems are also obtained by means of techniques based on bisimulation quantifiers. Via the standard second-order translation, the modal elementarity problem can be at- tacked with any second-order quantifier elimination algorithm. Our treatment of this ap- proach takes the form of a study of the DLS-algorithm. We partially characterize the for- mulae on which DLS succeeds in terms of syntactic criteria. It is shown that DLS succeeds in reducing all Sahlqvist and inductive formulae, and that all modal formulae in a single propositional variable on which it succeeds are canonical

    Negation in context

    Get PDF
    The present essay includes six thematically connected papers on negation in the areas of the philosophy of logic, philosophical logic and metaphysics. Each of the chapters besides the first, which puts each the chapters to follow into context, highlights a central problem negation poses to a certain area of philosophy. Chapter 2 discusses the problem of logical revisionism and whether there is any room for genuine disagreement, and hence shared meaning, between the classicist and deviant's respective uses of 'not'. If there is not, revision is impossible. I argue that revision is indeed possible and provide an account of negation as contradictoriness according to which a number of alleged negations are declared genuine. Among them are the negations of FDE (First-Degree Entailment) and a wide family of other relevant logics, LP (Priest's dialetheic "Logic of Paradox"), Kleene weak and strong 3-valued logics with either "exclusion" or "choice" negation, and intuitionistic logic. Chapter 3 discusses the problem of furnishing intuitionistic logic with an empirical negation for adequately expressing claims of the form 'A is undecided at present' or 'A may never be decided' the latter of which has been argued to be intuitionistically inconsistent. Chapter 4 highlights the importance of various notions of consequence-as-s-preservation where s may be falsity (versus untruth), indeterminacy or some other semantic (or "algebraic") value, in formulating rationality constraints on speech acts and propositional attitudes such as rejection, denial and dubitability. Chapter 5 provides an account of the nature of truth values regarded as objects. It is argued that only truth exists as the maximal truthmaker. The consequences this has for semantics representationally construed are considered and it is argued that every logic, from classical to non-classical, is gappy. Moreover, a truthmaker theory is developed whereby only positive truths, an account of which is also developed therein, have truthmakers. Chapter 6 investigates the definability of negation as "absolute" impossibility, i.e. where the notion of necessity or possibility in question corresponds to the global modality. The modality is not readily definable in the usual Kripkean languages and so neither is impossibility taken in the broadest sense. The languages considered here include one with counterfactual operators and propositional quantification and another bimodal language with a modality and its complementary. Among the definability results we give some preservation and translation results as well

    Decidability of Order-Based Modal Logics

    Get PDF

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established
    corecore