10 research outputs found

    The subpower membership problem for semigroups

    Full text link
    Fix a finite semigroup SS and let a1,,ak,ba_1,\ldots,a_k, b be tuples in a direct power SnS^n. The subpower membership problem (SMP) asks whether bb can be generated by a1,,aka_1,\ldots,a_k. If SS is a finite group, then there is a folklore algorithm that decides this problem in time polynomial in nknk. For semigroups this problem always lies in PSPACE. We show that the SMP for a full transformation semigroup on 3 letters or more is actually PSPACE-complete, while on 2 letters it is in P. For commutative semigroups, we provide a dichotomy result: if a commutative semigroup SS embeds into a direct product of a Clifford semigroup and a nilpotent semigroup, then SMP(S) is in P; otherwise it is NP-complete

    The Subpower Membership Problem for Finite Algebras with Cube Terms

    Full text link
    The subalgebra membership problem is the problem of deciding if a given element belongs to an algebra given by a set of generators. This is one of the best established computational problems in algebra. We consider a variant of this problem, which is motivated by recent progress in the Constraint Satisfaction Problem, and is often referred to as the Subpower Membership Problem (SMP). In the SMP we are given a set of tuples in a direct product of algebras from a fixed finite set K\mathcal{K} of finite algebras, and are asked whether or not a given tuple belongs to the subalgebra of the direct product generated by a given set. Our main result is that the subpower membership problem SMP(K\mathcal{K}) is in P if K\mathcal{K} is a finite set of finite algebras with a cube term, provided K\mathcal{K} is contained in a residually small variety. We also prove that for any finite set of finite algebras K\mathcal{K} in a variety with a cube term, each one of the problems SMP(K\mathcal{K}), SMP(HSK\mathbb{HS} \mathcal{K}), and finding compact representations for subpowers in K\mathcal{K}, is polynomial time reducible to any of the others, and the first two lie in NP

    Efficient enumeration of solutions produced by closure operations

    Full text link
    In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors) by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family of sets by any set of "set operations": union, intersection, symmetric difference, subsets, supersets \dots). To do so, we study the MembershipFMembership_{\mathcal{F}} problem: for a set of operations F\mathcal{F}, decide whether an element belongs to the closure by F\mathcal{F} of a family of elements. In the boolean case, we prove that MembershipFMembership_{\mathcal{F}} is in P for any set of boolean operations F\mathcal{F}. When the input vectors are over a domain larger than two elements, we prove that the generic enumeration method fails, since MembershipFMembership_{\mathcal{F}} is NP-hard for some F\mathcal{F}. We also study the problem of generating minimal or maximal elements of closures and prove that some of them are related to well known enumeration problems such as the enumeration of the circuits of a matroid or the enumeration of maximal independent sets of a hypergraph. This article improves on previous works of the same authors.Comment: 30 pages, 1 figure. Long version of the article arXiv:1509.05623 of the same name which appeared in STACS 2016. Final version for DMTCS journa

    The subpower membership problem of 2-nilpotent algebras

    Full text link
    The subpower membership problem SMP(A) of a finite algebraic structure A asks whether a given partial function from A^k to A can be interpolated by a term operation of A, or not. While this problem can be EXPTIME-complete in general, Willard asked whether it is always solvable in polynomial time if A is a Mal'tsev algebras. In particular, this includes many important structures studied in abstract algebra, such as groups, quasigroups, rings, Boolean algebras. In this paper we give an affirmative answer to Willard's question for a big class of 2-nilpotent Mal'tsev algebras. We furthermore develop tools that might be essential in answering the question for general nilpotent Mal'tsev algebras in the future.Comment: 17 pages (including appendix

    Aichinger equation on commutative semigroups

    Full text link
    We consider Aichinger's equation f(x1++xm+1)=i=1m+1gi(x1,x2,,xi^,,xm+1)f(x_1+\cdots+x_{m+1})=\sum_{i=1}^{m+1}g_i(x_1,x_2,\cdots, \widehat{x_i},\cdots, x_{m+1}) for functions defined on commutative semigroups which take values on commutative groups. The solutions of this equation are, under very mild hypotheses, generalized polynomials. We use the canonical form of generalized polynomials to prove that compositions and products of generalized polynomials are again generalized polynomials and that the bounds for the degrees are, in this new context, the natural ones. In some cases, we also show that a polynomial function defined on a semigroup can uniquely be extended to a polynomial function defined on a larger group. For example, if ff solves Aichinger's equation under the additional restriction that x1,,xm+1R+px_1,\cdots,x_{m+1}\in \mathbb{R}_+^p, then there exists a unique polynomial function FF defined on Rp\mathbb{R}^p such that FR+p=fF_{|\mathbb{R}_+^p}=f. In particular, if ff is also bounded on a set AR+pA\subseteq \mathbb{R}_+^p with positive Lebesgue measure then its unique polynomial extension FF is an ordinary polynomial of pp variables with total degree m\leq m, and the functions gig_i are also restrictions to R+pm\mathbb{R}_+^{pm} of ordinary polynomials of total degree m\leq m defined on Rpm\mathbb{R}^{pm}.Comment: 8 pages; submitted to a journal. This second version eliminates theorem 10 from the previous one, since it was not righ
    corecore