60 research outputs found

    On optimal quantization rules for some problems in sequential decentralized detection

    Full text link
    We consider the design of systems for sequential decentralized detection, a problem that entails several interdependent choices: the choice of a stopping rule (specifying the sample size), a global decision function (a choice between two competing hypotheses), and a set of quantization rules (the local decisions on the basis of which the global decision is made). This paper addresses an open problem of whether in the Bayesian formulation of sequential decentralized detection, optimal local decision functions can be found within the class of stationary rules. We develop an asymptotic approximation to the optimal cost of stationary quantization rules and exploit this approximation to show that stationary quantizers are not optimal in a broad class of settings. We also consider the class of blockwise stationary quantizers, and show that asymptotically optimal quantizers are likelihood-based threshold rules.Comment: Published as IEEE Transactions on Information Theory, Vol. 54(7), 3285-3295, 200

    Submodularity and Optimality of Fusion Rules in Balanced Binary Relay Trees

    Full text link
    We study the distributed detection problem in a balanced binary relay tree, where the leaves of the tree are sensors generating binary messages. The root of the tree is a fusion center that makes the overall decision. Every other node in the tree is a fusion node that fuses two binary messages from its child nodes into a new binary message and sends it to the parent node at the next level. We assume that the fusion nodes at the same level use the same fusion rule. We call a string of fusion rules used at different levels a fusion strategy. We consider the problem of finding a fusion strategy that maximizes the reduction in the total error probability between the sensors and the fusion center. We formulate this problem as a deterministic dynamic program and express the solution in terms of Bellman's equations. We introduce the notion of stringsubmodularity and show that the reduction in the total error probability is a stringsubmodular function. Consequentially, we show that the greedy strategy, which only maximizes the level-wise reduction in the total error probability, is within a factor of the optimal strategy in terms of reduction in the total error probability

    Compressed Fingerprint Matching and Camera Identification via Random Projections

    Get PDF
    Sensor imperfections in the form of photo-response nonuniformity (PRNU) patterns are a well-established fingerprinting technique to link pictures to the camera sensors that acquired them. The noise-like characteristics of the PRNU pattern make it a difficult object to compress, thus hindering many interesting applications that would require storage of a large number of fingerprints or transmission over a bandlimited channel for real-time camera matching. In this paper, we propose to use realvalued or binary random projections to effectively compress the fingerprints at a small cost in terms of matching accuracy. The performance of randomly projected fingerprints is analyzed from a theoretical standpoint and experimentally verified on databases of real photographs. Practical issues concerning the complexity of implementing random projections are also addressed by using circulant matrices

    Asynchronous Communication: Capacity Bounds and Suboptimality of Training

    Get PDF
    Several aspects of the problem of asynchronous point-to-point communication without feedback are developed when the source is highly intermittent. In the system model of interest, the codeword is transmitted at a random time within a prescribed window whose length corresponds to the level of asynchronism between the transmitter and the receiver. The decoder operates sequentially and communication rate is defined as the ratio between the message size and the elapsed time between when transmission commences and when the decoder makes a decision. For such systems, general upper and lower bounds on capacity as a function of the level of asynchronism are established, and are shown to coincide in some nontrivial cases. From these bounds, several properties of this asynchronous capacity are derived. In addition, the performance of training-based schemes is investigated. It is shown that such schemes, which implement synchronization and information transmission on separate degrees of freedom in the encoding, cannot achieve the asynchronous capacity in general, and that the penalty is particularly significant in the high-rate regime.Comment: 27 pages, 8 figures, submitted to the IEEE Transactions on Information Theor

    Detection Performance in Balanced Binary Relay Trees with Node and Link Failures

    Full text link
    We study the distributed detection problem in the context of a balanced binary relay tree, where the leaves of the tree correspond to NN identical and independent sensors generating binary messages. The root of the tree is a fusion center making an overall decision. Every other node is a relay node that aggregates the messages received from its child nodes into a new message and sends it up toward the fusion center. We derive upper and lower bounds for the total error probability PNP_N as explicit functions of NN in the case where nodes and links fail with certain probabilities. These characterize the asymptotic decay rate of the total error probability as NN goes to infinity. Naturally, this decay rate is not larger than that in the non-failure case, which is N\sqrt N. However, we derive an explicit necessary and sufficient condition on the decay rate of the local failure probabilities pkp_k (combination of node and link failure probabilities at each level) such that the decay rate of the total error probability in the failure case is the same as that of the non-failure case. More precisely, we show that logPN1=Θ(N)\log P_N^{-1}=\Theta(\sqrt N) if and only if logpk1=Ω(2k/2)\log p_k^{-1}=\Omega(2^{k/2})

    Quantitative steganalysis of LSB embedding in JPEG domain

    Full text link
    corecore