30 research outputs found

    A New Copyright Protection for Vector Map using FFT-based Watermarking

    Get PDF
    This study proposed a new approach of copyright protection for vector map using robust watermarking on FFT algorithm. A copyright marker inserted in vector map as the watermark. In addition to data origin authentication capabilities watermark, RSA cryptographic algorithm is used when generating the watermark. Quality measurement of the results was based on the three characteristics of digital watermarking: (1) invisibility using RMSE calculations, (2) fidelity with the farthest distance and (3) NC calculation and gemotrical level of robustness against attacks. Result of experiments showed that the approach used in this study succeeded in inserting copyright as watermark on vector maps. Invisibility test showed good results, demonstrated by RMSE close to zero. Fidelity of the watermarked map was also maintained. Level of watermark robustness against geometric attacks on vector map results has been maintained within the limits that these attacks do not affect the watermark bit value directly

    Spatial data mining approaches for GIS vector data processing

    Get PDF

    Copyright protection of scalar and multimedia sensor network data using digital watermarking

    Get PDF
    This thesis records the research on watermarking techniques to address the issue of copyright protection of the scalar data in WSNs and image data in WMSNs, in order to ensure that the proprietary information remains safe between the sensor nodes in both. The first objective is to develop LKR watermarking technique for the copyright protection of scalar data in WSNs. The second objective is to develop GPKR watermarking technique for copyright protection of image data in WMSN

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Machine Learning-based Methods for Driver Identification and Behavior Assessment: Applications for CAN and Floating Car Data

    Get PDF
    The exponential growth of car generated data, the increased connectivity, and the advances in artificial intelligence (AI), enable novel mobility applications. This dissertation focuses on two use-cases of driving data, namely distraction detection and driver identification (ID). Low and medium-income countries account for 93% of traffic deaths; moreover, a major contributing factor to road crashes is distracted driving. Motivated by this, the first part of this thesis explores the possibility of an easy-to-deploy solution to distracted driving detection. Most of the related work uses sophisticated sensors or cameras, which raises privacy concerns and increases the cost. Therefore a machine learning (ML) approach is proposed that only uses signals from the CAN-bus and the inertial measurement unit (IMU). It is then evaluated against a hand-annotated dataset of 13 drivers and delivers reasonable accuracy. This approach is limited in detecting short-term distractions but demonstrates that a viable solution is possible. In the second part, the focus is on the effective identification of drivers using their driving behavior. The aim is to address the shortcomings of the state-of-the-art methods. First, a driver ID mechanism based on discriminative classifiers is used to find a set of suitable signals and features. It uses five signals from the CAN-bus, with hand-engineered features, which is an improvement from current state-of-the-art that mainly focused on external sensors. The second approach is based on Gaussian mixture models (GMMs), although it uses two signals and fewer features, it shows improved accuracy. In this system, the enrollment of a new driver does not require retraining of the models, which was a limitation in the previous approach. In order to reduce the amount of training data a Triplet network is used to train a deep neural network (DNN) that learns to discriminate drivers. The training of the DNN does not require any driving data from the target set of drivers. The DNN encodes pieces of driving data to an embedding space so that in this space examples of the same driver will appear closer to each other and far from examples of other drivers. This technique reduces the amount of data needed for accurate prediction to under a minute of driving data. These three solutions are validated against a real-world dataset of 57 drivers. Lastly, the possibility of a driver ID system is explored that only uses floating car data (FCD), in particular, GPS data from smartphones. A DNN architecture is then designed that encodes the routes, origin, and destination coordinates as well as various other features computed based on contextual information. The proposed model is then evaluated against a dataset of 678 drivers and shows high accuracy. In a nutshell, this work demonstrates that proper driver ID is achievable. The constraints imposed by the use-case and data availability negatively affect the performance; in such cases, the efficient use of the available data is crucial
    corecore