9,625 research outputs found

    Mathematical modelling and experimental validation of electrostatic sensors for rotational speed measurement

    Get PDF
    Recent research has demonstrated that electrostatic sensors can be applied to the measurement of rotational speed with excellent repeatability and accuracy under a range of conditions. However, the sensing mechanism and fundamental characteristics of the electrostatic sensors are still largely unknown and hence the design of the sensors is not optimised for rotational speed measurement. This paper presents the mathematical modelling of strip electrostatic sensors for rotational speed measurement and associated experimental studies for the validation of the modelling results. In the modelling, an ideal point charge on the surface of the rotating object is regarded as an impulse input to the sensing system. The fundamental characteristics of the sensor, including spatial sensitivity, spatial filtering length and signal bandwidth, are quantified from the developed model. The effects of the geometric dimensions of the electrode, the distance between the electrode and the rotor surface and the rotational speed being measured on the performance of the sensor are analyzed. A close agreement between the modelling results and experimental measurements has been observed under a range of conditions. Optimal design of the electrostatic sensor for a given rotor size is suggested and discussed in accordance with the modelling and experimental results

    A review of electrostatic monitoring technology: The state of the art and future research directions

    Get PDF
    Electrostatic monitoring technology is a useful tool for monitoring and detecting component faults and degradation, which is necessary for system health management. It encompasses three key research areas: sensor technology; signal detection, processing and feature extraction; and verification experimentation. It has received considerable recent attention for condition monitoring due to its ability to provide warning information and non-obstructive measurements on-line. A number of papers in recent years have covered specific aspects of the technology, including sensor design optimization, sensor characteristic analysis, signal de-noising and practical applications of the technology. This paper provides a review of the recent research and of the development of electrostatic monitoring technology, with a primary emphasis on its application for the aero-engine gas path. The paper also presents a summary of some of the current applications of electrostatic monitoring technology in other industries, before concluding with a brief discussion of the current research situation and possible future challenges and research gaps in this field. The aim of this paper is to promote further research into this promising technology by increasing awareness of both the potential benefits of the technology and the current research gaps

    Electrostatic Sensors – Their Principles and Applications

    Get PDF
    Over the past three decades electrostatic sensors have been proposed, developed and utilised for the continuous monitoring and measurement of a range of industrial processes, mechanical systems and clinical environments. Electrostatic sensors enjoy simplicity in structure, cost-effectiveness and suitability for a wide range of installation conditions. They either provide unique solutions to some measurement challenges or offer more cost-effective options to the more established sensors such as those based on acoustic, capacitive, optical and electromagnetic principles. The established or potential applications of electrostatic sensors appear wide ranging, but the underlining sensing principle and resultant system characteristics are very similar. This paper presents a comprehensive review of the electrostatic sensors and sensing systems that have been developed for the measurement and monitoring of a range of process variables and conditions. These include the flow measurement of pneumatically conveyed solids, measurement of particulate emissions, monitoring of fluidised beds, on-line particle sizing, burner flame monitoring, speed and radial vibration measurement of mechanical systems, and condition monitoring of power transmission belts, mechanical wear, and human activities. The fundamental sensing principles together with the advantages and limitations of electrostatic sensors for a given area of applications are also introduced. The technology readiness level for each area of applications is identified and commented. Trends and future development of electrostatic sensors, their signal conditioning electronics, signal processing methods as well as possible new applications are also discussed

    Mathematical Modelling and Experimental Evaluation of Electrostatic Sensor Arrays for the Flow Measurement of Fine Particles in a Square-shaped Pipe

    Get PDF
    Abstract—Square-shaped pneumatic conveying pipes are used in some industrial processes such as fuel injection systems in coal-fired power plants and circulating fluidized beds. However, little research has been conducted to characterise the gas–solid two-phase flow in a square-shaped pneumatic conveying pipe. This paper presents mathematical modelling and experimental assessment of novel non-restrictive electrostatic sensor arrays for the measurement of pulverised fuel flow in a square-shaped pipe. The sensor arrays consist of twelve pairs of strip-shaped electrodes, which are uniformly embedded in the four flat pipe walls. An analytical mathematical model of the sensor arrays is established and the induced charge and currents of different electrodes due to a point charge are then derived based on the model. Experimental tests were conducted on a 54 mm square-shaped pipe section of a pneumatic conveyor test rig under a range of flow conditions. The fuel velocity profile over the whole cross-section of the pipe is measured. Mathematical modelling and experimental results demonstrate that the proposed non-restrictive electrostatic sensor arrays are capable of characterising the local pulverised fuel flow in a square-shaped pneumatic conveying pipe. Index Terms—electrostatic sensor, square-shaped pipe, mathematical modelling, velocity profile, pulverised fuel

    The ESA mission to Comet Halley

    Get PDF
    The Europeon Space Agency's approximately Giotto mission plans for a launch in July 1985 with a Halley encounter in mid-March 1986 4 weeks after the comet's perihelion passage. Giotto carries 10 scientific experiments, a camera, neutral, ion and dust mass spectrometers, a dust impact detector system, various plasma analyzers, a magnetometer and an optical probe. The instruments are described, the principles on which they are based are described, and the experiment key performance data are summarized. The launch constraints the helicentric transfer trajectory, and the encounter scenario are analyzed. The Giotto spacecraft major design criteria, spacecraft subsystem and the ground system are described. The problem of hypervelocity dust particle impacts in the innermost part of the coma, the problem of spacecraft survival, and the adverse effects of impact-generated plasma aroung the spacecraft are considered

    Measurement of the Mass Flow and Velocity Distributions of Pulverized Fuel in Primary Air Pipes Using Electrostatic Sensing Techniques

    Get PDF
    On-line measurement of pulverized fuel (PF) distribution between primary air pipes on a coal-fired power plant is of great importance to achieve balanced fuel supply to the boiler for increased combustion efficiency and reduced pollutant emissions. An instrumentation system using multiple electrostatic sensing heads are developed and installed on 510 mm bore primary air pipes on the same mill of a 600 MW coal-fired boiler unit for the measurement of PF mass flow and velocity distributions. An array of electrostatic electrodes with different axial widths is housed in a sensing head. An electrode with a greater axial width and three narrower electrodes are used to derive the electrostatic signals for the determination of PF mass flow rate and velocity, respectively. The PF velocity is determined by multiple cross-correlation of the electrostatic signals from the narrow electrodes. The measured PF velocity is applied on the root-mean-square magnitude of the measured electrostatic signal from the wide electrode for the calibration of PF mass flow rate. On-plant comparison trials of the developed system were conducted under five typical operating conditions after a system calibration test. Isokinetic sampling equipment is used to obtain reference data to evaluate the performance of the developed system. Experimental data demonstrate that the developed system is effective and reliable for the on-line continuous measurement of the mass flow and velocity distributions between the primary air pipes of the same mill

    Simultaneous Measurement of Belt Speed and Vibration Through Electrostatic Sensing and Data Fusion

    Get PDF
    Accurate and reliable measurement of belt speed and vibration is of great importance in a range of industries. This paper presents a feasibility study of using an electrostatic sensor array and signal processing algorithms for the simultaneous measurement of belt speed and vibration in an online, continuous manner. The design, implementation, and assessment of an experimental system based on this concept are presented. In comparison with existing techniques, the electrostatic sensing method has the advantages of non-contact and simultaneous measurement, low cost, simple structure, and easy installation. The characteristics of electrostatic sensors are studied through finite-element modeling using a point charge moving in the sensing zone of the electrode. The sensor array is arranged in a 2 × 3 matrix, with the belt running between two rows of three identical sensing elements. The three signals in a row are cross correlated for speed calculation, and the results are then fused to give a final measurement. The vibration modes of the belt are identified by fusing the normalized spectra of vertically paired sensor signals. Experiments conducted on a two-pulley belt-driven rig show that the system can measure the belt speed with a relative error within ±2% over the range 2-10 m/s. More accurate and repeatable speed measurements are achieved for higher belt speeds and a shorter distance between the electrode and the belt. It is found that a stretched belt vibrates at the harmonics of the belt pass frequency and hence agrees the expected vibration characteristics

    Flame Boundary Measurement Using an Electrostatic Sensor Array

    Get PDF
    Flame boundary is an important geometrical characteristic for the evaluation of flame properties such as heat release rate and radiation. Reliable and accurate measurement of flame boundary is desirable for the prediction of flame structure and the optimization of combustion systems. Such measurement will inform the designers and operators of the combustion systems. This paper presents for the first time a study of using an electrostatic sensor array for flame boundary measurement. The electrostatic sensor is placed in the vicinity of the flame to sense its movement through charge transfer. The principle, design, implementation and assessment of a measurement system based on this methodology are introduced. Comparative experimental investigations with a digital camera conducted on a laboratory-scale combustion test rig show that the electrostatic sensor can respond to the variation of the distance between the electrode and the flame boundary. Reconstruction of the flame boundary is achieved using a set of distance measurements obtained from a sensor array. For diffusion flames over the range of fuel flow rate 0.60-0.80 L/min and premixed flames over the range of equivalence ratio 1.27-3.81, experimental results show that the measurement system is capable of providing reliable measurement of the flame boundary. The correlation coefficients under all test conditions are mostly larger than 0.96, the mean relative errors within 7.4% and the relative root mean square errors within 0.09. More accurate flame boundary measurements are achieved for diffusion flames. In addition, the overall polarity of charges in a flame can be determined from the polarity of the sensor signal
    • …
    corecore