5,158 research outputs found

    Micro-Arcsecond Radio Astrometry

    Full text link
    Astrometry provides the foundation for astrophysics. Accurate positions are required for the association of sources detected at different times or wavelengths, and distances are essential to estimate the size, luminosity, mass, and ages of most objects. Very Long Baseline Interferometry at radio wavelengths, with diffraction-limited imaging at sub-milliarcsec resolution, has long held the promise of micro-arcsecond astrometry. However, only in the past decade has this been routinely achieved. Currently, parallaxes for sources across the Milky Way are being measured with ~10 uas accuracy and proper motions of galaxies are being determined with accuracies of ~1 uas/y. The astrophysical applications of these measurements cover many fields, including star formation, evolved stars, stellar and super-massive black holes, Galactic structure, the history and fate of the Local Group, the Hubble constant, and tests of general relativity. This review summarizes the methods used and the astrophysical applications of micro-arcsecond radio astrometry.Comment: To appear in Annual Reviews of Astronomy and Astrophysics (2014

    Surface deformation and elasticity studies in the Virgin Islands

    Get PDF
    The report consists of four sections. The first section describes tilt and leveling measurements on Anegada, the most northerly of the British Virgin Islands; the second section contains a discussion of sea-level measurements that were initiated in the region and which played a significant role in the development of a network of sea-level monitors now telemetered via satellite from the Alaskan Shumagin Islands. The third part of the report is a brief description of surface deformation measurements in Iceland using equipment and techniques developed by the subject grant. The final part of the report describes the predicted effects of block surface fragmentation in tectonic areas on the measurement of tilt and strain

    Leaps: an approach to the block structure of a graph

    Get PDF
    To study the block structure of a connected graph G=(V,E), we introduce two algebraic approaches that reflect this structure: a binary operation + called a leap operation and a ternary relation L called a leap system, both on a finite, nonempty set V. These algebraic structures are easily studied by considering their underlying graphs, which turn out to be block graphs. Conversely, we define the operation +G as well as the set of leaps LG of the connected graph G. The underlying graph of +G , as well as that of LG , turns out to be just the block closure of G (i.e. the graph obtained by making each block of G into a complete subgraph).

    The system of tracking the position of the bucket excavator's wheel for prevention of risk situations

    Get PDF
    For companies doing business in mining mineral deposits, ensuring safe work is one of the key tasks (Safety First!). One of the important trends in this area is prevention and endeavour to forestall risk situations. Risks need to be searched, technically described, spatially defined, evaluated and categorized by degree of risk. Complex geological and stability conditions can be one of the sources of persistent and significant risks, which are mainly landslides and rockslides threatening both mining equipment and employees. The problem described in this article and its solution concerns the Most Basin (formerly the North Bohemian Lignite Basin). This is a tertiary basin that was founded in the Oligocene. The main mineral is lignite and mining takes place on the surface. The main excavating machinery in the surface lignite quarries in Europe (Czech Republic, Germany, Poland) is the bucket wheel excavator.Web of Science15328727

    The Megamaser Cosmology Project. X. High Resolution Maps and Mass Constraint for SMBHs

    Full text link
    We present high resolution (sub-mas) VLBI maps of nuclear H2O megamasers for seven galaxies. In UGC6093, the well-aligned systemic masers and high-velocity masers originate in an edge-on, flat disk and we determine the mass of the central SMBH to be M_SMBH = 2.58*10^7Msun(+-7%). For J1346+5228, the distribution of masers is consistent with a disk, but the faint high-velocity masers are only marginally detected, and we constrain the mass of the SMBH to be in the range 1.5-2.0*10^7Msun. The origin of the masers in Mrk1210 is less clear, as the systemic and high-velocity masers are misaligned and show a disorganized velocity structure. We present one possible model in which the masers originate in a tilted, warped disk, but we do not rule out the possibility of other explanations including outflow masers. In NGC6926, we detect a set of redshifted masers, clustered within a pc of each other, and a single blueshifted maser about 4.4pc away, an offset that would be unusually large for a maser disk system. Nevertheless, if it is a disk system, we estimate the enclosed mass to be M_SMBH<4.8*10^7 Msun . For NGC5793, we detect redshifted masers spaced about 1.4pc from a clustered set of blueshifted features. The orientation of the structure supports a disk scenario as suggested by Hagiwara et al.(2001). We estimate the enclosed mass to be M SMBH<1.3*10^7 Msun. For NGC2824 and J0350-0127, the masers may be associated with pc or sub-pc scale jets or outflows.Comment: Accepted by Ap

    A characterization of bipartite graphs associated with BIB-designs with λ = 1

    Get PDF
    AbstractA graph is said to be F-geodetic (for some function F) if the number of shortest paths between two vertices at distance i is F(i). It is shown that a bipartite F-geodetic graph with diameter ⩽4 is either (i)a tree, or(ii)a distance-regular graph, or(iii)the graph associated with a BIB-design with λ = 1
    corecore