3,746 research outputs found

    The strongly distance-balanced property of the generalized Petersen graphs

    Get PDF
    A graph ā–«XXā–« is said to be strongly distance-balanced whenever for any edge ā–«uvuvā–« of ā–«XXā–« and any positive integer ā–«iiā–«, the number of vertices at distance ā–«iiā–« from ā–«uuā–« and at distance ā–«i+1i + 1ā–« from ā–«vvā–« is equal to the number of vertices at distance ā–«i+1i + 1ā–« from ā–«uuā–« and at distance ā–«iiā–« from ā–«vvā–«. It is proven that for any integers ā–«kge2k ge 2ā–« and ā–«ngek2+4k+1n ge k^2 + 4k + 1ā–«, the generalized Petersen graph GPā–«(n,k)(n, k)ā–« is not strongly distance-balanced

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Strongly distance-balanced graphs and graph products

    Get PDF
    AbstractA graph G is strongly distance-balanced if for every edge uv of G and every iā‰„0 the number of vertices x with d(x,u)=d(x,v)āˆ’1=i equals the number of vertices y with d(y,v)=d(y,u)āˆ’1=i. It is proved that the strong product of graphs is strongly distance-balanced if and only if both factors are strongly distance-balanced. It is also proved that connected components of the direct product of two bipartite graphs are strongly distance-balanced if and only if both factors are strongly distance-balanced. Additionally, a new characterization of distance-balanced graphs and an algorithm of time complexity O(mn) for their recognition, where m is the number of edges and n the number of vertices of the graph in question, are given

    On a conjecture of Brouwer involving the connectivity of strongly regular graphs

    Full text link
    In this paper, we study a conjecture of Andries E. Brouwer from 1996 regarding the minimum number of vertices of a strongly regular graph whose removal disconnects the graph into non-singleton components. We show that strongly regular graphs constructed from copolar spaces and from the more general spaces called Ī”\Delta-spaces are counterexamples to Brouwer's Conjecture. Using J.I. Hall's characterization of finite reduced copolar spaces, we find that the triangular graphs T(m)T(m), the symplectic graphs Sp(2r,q)Sp(2r,q) over the field Fq\mathbb{F}_q (for any qq prime power), and the strongly regular graphs constructed from the hyperbolic quadrics O+(2r,2)O^{+}(2r,2) and from the elliptic quadrics Oāˆ’(2r,2)O^{-}(2r,2) over the field F2\mathbb{F}_2, respectively, are counterexamples to Brouwer's Conjecture. For each of these graphs, we determine precisely the minimum number of vertices whose removal disconnects the graph into non-singleton components. While we are not aware of an analogue of Hall's characterization theorem for Ī”\Delta-spaces, we show that complements of the point graphs of certain finite generalized quadrangles are point graphs of Ī”\Delta-spaces and thus, yield other counterexamples to Brouwer's Conjecture. We prove that Brouwer's Conjecture is true for many families of strongly regular graphs including the conference graphs, the generalized quadrangles GQ(q,q)GQ(q,q) graphs, the lattice graphs, the Latin square graphs, the strongly regular graphs with smallest eigenvalue -2 (except the triangular graphs) and the primitive strongly regular graphs with at most 30 vertices except for few cases. We leave as an open problem determining the best general lower bound for the minimum size of a disconnecting set of vertices of a strongly regular graph, whose removal disconnects the graph into non-singleton components.Comment: 25 pages, 1 table; accepted to JCTA; revised version contains a new section on copolar and Delta space

    Chip-firing may be much faster than you think

    Full text link
    A new bound (Theorem \ref{thm:main}) for the duration of the chip-firing game with NN chips on a nn-vertex graph is obtained, by a careful analysis of the pseudo-inverse of the discrete Laplacian matrix of the graph. This new bound is expressed in terms of the entries of the pseudo-inverse. It is shown (Section 5) to be always better than the classic bound due to Bj{\"o}rner, Lov\'{a}sz and Shor. In some cases the improvement is dramatic. For instance: for strongly regular graphs the classic and the new bounds reduce to O(nN)O(nN) and O(n+N)O(n+N), respectively. For dense regular graphs - d=(12+Ļµ)nd=(\frac{1}{2}+\epsilon)n - the classic and the new bounds reduce to O(N)O(N) and O(n)O(n), respectively. This is a snapshot of a work in progress, so further results in this vein are in the works

    Divisible Design Graphs

    Get PDF
    AMS Subject Classification: 05B05, 05E30, 05C50.Strongly regular graph;Group divisible design;Deza graph;(v;k;)-Graph
    • ā€¦
    corecore