17,435 research outputs found

    Engineering Agent Systems for Decision Support

    Get PDF
    This paper discusses how agent technology can be applied to the design of advanced Information Systems for Decision Support. In particular, it describes the different steps and models that are necessary to engineer Decision Support Systems based on a multiagent architecture. The approach is illustrated by a case study in the traffic management domain

    A Review of Traffic Signal Control.

    Get PDF
    The aim of this paper is to provide a starting point for the future research within the SERC sponsored project "Gating and Traffic Control: The Application of State Space Control Theory". It will provide an introduction to State Space Control Theory, State Space applications in transportation in general, an in-depth review of congestion control (specifically traffic signal control in congested situations), a review of theoretical works, a review of existing systems and will conclude with recommendations for the research to be undertaken within this project

    Optimal Caching and Routing in Hybrid Networks

    Full text link
    Hybrid networks consisting of MANET nodes and cellular infrastructure have been recently proposed to improve the performance of military networks. Prior work has demonstrated the benefits of in-network content caching in a wired, Internet context. We investigate the problem of developing optimal routing and caching policies in a hybrid network supporting in-network caching with the goal of minimizing overall content-access delay. Here, needed content may always be accessed at a back-end server via the cellular infrastructure; alternatively, content may also be accessed via cache-equipped "cluster" nodes within the MANET. To access content, MANET nodes must thus decide whether to route to in-MANET cluster nodes or to back-end servers via the cellular infrastructure; the in-MANET cluster nodes must additionally decide which content to cache. We model the cellular path as either i) a congestion-insensitive fixed-delay path or ii) a congestion-sensitive path modeled as an M/M/1 queue. We demonstrate that under the assumption of stationary, independent requests, it is optimal to adopt static caching (i.e., to keep a cache's content fixed over time) based on content popularity. We also show that it is optimal to route to in-MANET caches for content cached there, but to route requests for remaining content via the cellular infrastructure for the congestion-insensitive case and to split traffic between the in-MANET caches and cellular infrastructure for the congestion-sensitive case. We develop a simple distributed algorithm for the joint routing/caching problem and demonstrate its efficacy via simulation.Comment: submitted to Milcom 201

    A Study of Truck Platooning Incentives Using a Congestion Game

    Full text link
    We introduce an atomic congestion game with two types of agents, cars and trucks, to model the traffic flow on a road over various time intervals of the day. Cars maximize their utility by finding a trade-off between the time they choose to use the road, the average velocity of the flow at that time, and the dynamic congestion tax that they pay for using the road. In addition to these terms, the trucks have an incentive for using the road at the same time as their peers because they have platooning capabilities, which allow them to save fuel. The dynamics and equilibria of this game-theoretic model for the interaction between car traffic and truck platooning incentives are investigated. We use traffic data from Stockholm to validate parts of the modeling assumptions and extract reasonable parameters for the simulations. We use joint strategy fictitious play and average strategy fictitious play to learn a pure strategy Nash equilibrium of this game. We perform a comprehensive simulation study to understand the influence of various factors, such as the drivers' value of time and the percentage of the trucks that are equipped with platooning devices, on the properties of the Nash equilibrium.Comment: Updated Introduction; Improved Literature Revie

    On the Feasibility of Social Network-based Pollution Sensing in ITSs

    Full text link
    Intense vehicular traffic is recognized as a global societal problem, with a multifaceted influence on the quality of life of a person. Intelligent Transportation Systems (ITS) can play an important role in combating such problem, decreasing pollution levels and, consequently, their negative effects. One of the goals of ITSs, in fact, is that of controlling traffic flows, measuring traffic states, providing vehicles with routes that globally pursue low pollution conditions. How such systems measure and enforce given traffic states has been at the center of multiple research efforts in the past few years. Although many different solutions have been proposed, very limited effort has been devoted to exploring the potential of social network analysis in such context. Social networks, in general, provide direct feedback from people and, as such, potentially very valuable information. A post that tells, for example, how a person feels about pollution at a given time in a given location, could be put to good use by an environment aware ITS aiming at minimizing contaminant emissions in residential areas. This work verifies the feasibility of using pollution related social network feeds into ITS operations. In particular, it concentrates on understanding how reliable such information is, producing an analysis that confronts over 1,500,000 posts and pollution data obtained from on-the- field sensors over a one-year span.Comment: 10 pages, 15 figures, Transaction Forma
    • …
    corecore