1,256,380 research outputs found

    The GSFC scientific data storage problem

    Get PDF
    Scientific data storage problems of telemetry tape

    Coding Solutions for the Secure Biometric Storage Problem

    Full text link
    The paper studies the problem of securely storing biometric passwords, such as fingerprints and irises. With the help of coding theory Juels and Wattenberg derived in 1999 a scheme where similar input strings will be accepted as the same biometric. In the same time nothing could be learned from the stored data. They called their scheme a "fuzzy commitment scheme". In this paper we will revisit the solution of Juels and Wattenberg and we will provide answers to two important questions: What type of error-correcting codes should be used and what happens if biometric templates are not uniformly distributed, i.e. the biometric data come with redundancy. Answering the first question will lead us to the search for low-rate large-minimum distance error-correcting codes which come with efficient decoding algorithms up to the designed distance. In order to answer the second question we relate the rate required with a quantity connected to the "entropy" of the string, trying to estimate a sort of "capacity", if we want to see a flavor of the converse of Shannon's noisy coding theorem. Finally we deal with side-problems arising in a practical implementation and we propose a possible solution to the main one that seems to have so far prevented real life applications of the fuzzy scheme, as far as we know.Comment: the final version appeared in Proceedings Information Theory Workshop (ITW) 2010, IEEE copyrigh

    GDSP: A Graphical Perspective on the Distributed Storage Systems

    Full text link
    The classical distributed storage problem can be modeled by a k-uniform {\it complete} hyper-graph where vertices represent servers and hyper-edges represent users. Hence each hyper-edge should be able to recover the full file using only the memories of the vertices associated with it. This paper considers the generalization of this problem to {\it arbitrary} hyper-graphs and to the case of multiple files, where each user is only interested in one, a problem we will refer to as the graphical distributed storage problem (GDSP). Specifically, we make progress in the analysis of minimum-storage codes for two main subproblems of the GDSP which extend the classical model in two independent directions: the case of an arbitrary graph with multiple files, and the case of an arbitrary hyper-graph with a single file

    Energy Storage Sharing Strategy in Distribution Networks Using Bi-level Optimization Approach

    Full text link
    In this paper, we address the energy storage management problem in distribution networks from the perspective of an independent energy storage manager (IESM) who aims to realize optimal energy storage sharing with multi-objective optimization, i.e., optimizing the system peak loads and the electricity purchase costs of the distribution company (DisCo) and its customers. To achieve the goal of the IESM, an energy storage sharing strategy is therefore proposed, which allows DisCo and customers to control the assigned energy storage. The strategy is updated day by day according to the system information change. The problem is formulated as a bi-level mathematical model where the upper level model (ULM) seeks for optimal division of energy storage among Disco and customers, and the lower level models (LLMs) represent the minimizations of the electricity purchase costs of DisCo and customers. Further, in order to enhance the computation efficiency, we transform the bi-level model into a single-level mathematical program with equilibrium constraints (MPEC) model and linearize it. Finally, we validate the effectiveness of the strategy and complement our analysis through case studies

    On Distributed Storage Allocations for Memory-Limited Systems

    Full text link
    In this paper we consider distributed allocation problems with memory constraint limits. Firstly, we propose a tractable relaxation to the problem of optimal symmetric allocations from [1]. The approximated problem is based on the Q-error function, and its solution approaches the solution of the initial problem, as the number of storage nodes in the network grows. Secondly, exploiting this relaxation, we are able to formulate and to solve the problem for storage allocations for memory-limited DSS storing and arbitrary memory profiles. Finally, we discuss the extension to the case of multiple data objects, stored in the DSS.Comment: Submitted to IEEE GLOBECOM'1
    • …
    corecore