1,134 research outputs found

    25th International Congress of the European Association for Endoscopic Surgery (EAES) Frankfurt, Germany, 14-17 June 2017 : Oral Presentations

    Get PDF
    Introduction: Ouyang has recently proposed hiatal surface area (HSA) calculation by multiplanar multislice computer tomography (MDCT) scan as a useful tool for planning treatment of hiatus defects with hiatal hernia (HH), with or without gastroesophageal reflux (MRGE). Preoperative upper endoscopy or barium swallow cannot predict the HSA and pillars conditions. Aim to asses the efficacy of MDCT’s calculation of HSA for planning the best approach for the hiatal defects treatment. Methods: We retrospectively analyzed 25 patients, candidates to laparoscopic antireflux surgery as primary surgery or hiatus repair concomitant with or after bariatric surgery. Patients were analyzed preoperatively and after one-year follow-up by MDCT scan measurement of esophageal hiatus surface. Five normal patients were enrolled as control group. The HSA’s intraoperative calculation was performed after complete dissection of the area considered a triangle. Postoperative CT-scan was done after 12 months or any time reflux symptoms appeared. Results: (1) Mean HSA in control patients with no HH, no MRGE was cm2 and similar in non-complicated patients with previous LSG and cruroplasty. (2) Mean HSA in patients candidates to cruroplasty was 7.40 cm2. (3) Mean HSA in patients candidates to redo cruroplasty for recurrence was 10.11 cm2. Discussion. MDCT scan offer the possibility to obtain an objective measurement of the HSA and the correlation with endoscopic findings and symptoms. The preoperative information allow to discuss with patients the proper technique when a HSA[5 cm2 is detected. During the follow-up a correlation between symptoms and failure of cruroplasty can be assessed. Conclusions: MDCT scan seems to be an effective non-invasive method to plan hiatal defect treatment and to check during the follow-up the potential recurrence. Future research should correlate in larger series imaging data with intraoperative findings

    In vivo estimation of target registration errors during augmented reality laparoscopic surgery

    Get PDF
    PURPOSE: Successful use of augmented reality for laparoscopic surgery requires that the surgeon has a thorough understanding of the likely accuracy of any overlay. Whilst the accuracy of such systems can be estimated in the laboratory, it is difficult to extend such methods to the in vivo clinical setting. Herein we describe a novel method that enables the surgeon to estimate in vivo errors during use. We show that the method enables quantitative evaluation of in vivo data gathered with the SmartLiver image guidance system. METHODS: The SmartLiver system utilises an intuitive display to enable the surgeon to compare the positions of landmarks visible in both a projected model and in the live video stream. From this the surgeon can estimate the system accuracy when using the system to locate subsurface targets not visible in the live video. Visible landmarks may be either point or line features. We test the validity of the algorithm using an anatomically representative liver phantom, applying simulated perturbations to achieve clinically realistic overlay errors. We then apply the algorithm to in vivo data. RESULTS: The phantom results show that using projected errors of surface features provides a reliable predictor of subsurface target registration error for a representative human liver shape. Applying the algorithm to in vivo data gathered with the SmartLiver image-guided surgery system shows that the system is capable of accuracies around 12 mm; however, achieving this reliably remains a significant challenge. CONCLUSION: We present an in vivo quantitative evaluation of the SmartLiver image-guided surgery system, together with a validation of the evaluation algorithm. This is the first quantitative in vivo analysis of an augmented reality system for laparoscopic surgery

    Enhanced Surgeons: Understanding the Design of Augmented Reality Instructions for Keyhole Surgery

    Get PDF
    It is important to understand how to design AR content for surgical contexts to mitigate the risk of distracting the surgeons. In this work, we test information overlays for AR guidance during keyhole surgery. We performed a preliminary evaluation of a prototype, focusing on the effects of colour, opacity, and information representation. Our work contributes insights into the design of AR guidance in surgery settings and a foundation for future research on visualisation design for surgical AR

    Augmented Reality in Kidney Cancer

    Get PDF
    Augmented reality(AR) is the concept of a digitally created perception that enhances components of the real-world to allow better engagement with it. Within healthcare, there has been a recent expansion of AR solutions, especially in the field of surgery. Traditional renal cancer surgery has been largely replaced by minimally invasive laparoscopic (or robotic) partial nephrectomies. This has meant loss of certain intra-operative experiences such as haptic feedback and AR can aid this replacement with enhanced visual and patient-specific feedback. The kidney is a dynamic organ and current AR development has revolved around specific surgical stages such as safe arterial clamping and perfecting tumour margins. This chapter discusses the current state of AR technology in these areas with key attention to the aspects of image registration, organ tracking, tissue deformation and live imaging. The chapter then discusses limitations of AR, such as intentional blindness and depth perception and provides potential future ideas and solutions. These include inventions such as AR headsets and 3D-printed renal models (with the possibility of remote surgical intervention). AR provides a very positive outcome for the future of truly minimally invasive renal surgery. However, current AR needs validation, cost evaluation and thorough planning before being safely integrated into everyday surgical practice

    Augmented and virtual reality in surgery—the digital surgical environment:applications, limitations and legal pitfalls

    Get PDF
    The continuing enhancement of the surgical environment in the digital age has led to a number of innovations being highlighted as potential disruptive technologies in the surgical workplace. Augmented reality (AR) and virtual reality (VR) are rapidly becoming increasingly available, accessible and importantly affordable, hence their application into healthcare to enhance the medical use of data is certain. Whether it relates to anatomy, intraoperative surgery, or post-operative rehabilitation, applications are already being investigated for their role in the surgeons armamentarium. Here we provide an introduction to the technology and the potential areas of development in the surgical arena

    The value of Augmented Reality in surgery — A usability study on laparoscopic liver surgery

    Get PDF
    Augmented Reality (AR) is considered to be a promising technology for the guidance of laparoscopic liver surgery. By overlaying pre-operative 3D information of the liver and internal blood vessels on the laparoscopic view, surgeons can better understand the location of critical structures. In an effort to enable AR, several authors have focused on the development of methods to obtain an accurate alignment between the laparoscopic video image and the pre-operative 3D data of the liver, without assessing the benefit that the resulting overlay can provide during surgery. In this paper, we present a study that aims to assess quantitatively and qualitatively the value of an AR overlay in laparoscopic surgery during a simulated surgical task on a phantom setup. We design a study where participants are asked to physically localise pre-operative tumours in a liver phantom using three image guidance conditions — a baseline condition without any image guidance, a condition where the 3D surfaces of the liver are aligned to the video and displayed on a black background, and a condition where video see-through AR is displayed on the laparoscopic video. Using data collected from a cohort of 24 participants which include 12 surgeons, we observe that compared to the baseline, AR decreases the median localisation error of surgeons on non-peripheral targets from 25.8 mm to 9.2 mm. Using subjective feedback, we also identify that AR introduces usability improvements in the surgical task and increases the perceived confidence of the users. Between the two tested displays, the majority of participants preferred to use the AR overlay instead of navigated view of the 3D surfaces on a separate screen. We conclude that AR has the potential to improve performance and decision making in laparoscopic surgery, and that improvements in overlay alignment accuracy and depth perception should be pursued in the future

    Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

    Get PDF
    Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics

    Training the gynecologic oncologists of the future: challenges and opportunities

    Get PDF
    Several recent advances in gynecologic cancer care have improved patient outcomes. These include national screening and vaccination programs for cervical cancer as well as neoadjuvant chemotherapy for ovarian cancer. Conversely, these advances have cumulatively reduced surgical opportunities for training creating a need to supplement existing training strategies with evidence-based adjuncts. Technologies such as virtual reality and augmented reality, if properly evaluated and validated, have transformative potential to support training. Given the changing landscape of surgical training in gynecologic oncology, we were keen to summarize the evidence underpinning current training in gynecologic oncology.In this review, we undertook a literature search of Medline, Google, Google Scholar, Embase and Scopus to gather evidence on the current state of training in gynecologic oncology and to highlight existing evidence on the best methods to teach surgical skills. Drawing from the experiences of other surgical specialties we examined the use of training adjuncts such as cadaveric dissection, animation and 3D models as well as simulation training in surgical skills acquisition. Specifically, we looked at the use of training adjuncts in gynecologic oncology training as well as the evidence behind simulation training modalities such as low fidelity box trainers, virtual and augmented reality simulation in laparoscopic training. Finally, we provided context by looking at how training curriculums varied internationally.Whereas some evidence to the reliability and validity of simulation training exists in other surgical specialties, our literature review did not find such evidence in gynecologic oncology. It is important that well conducted trials are used to ascertain the utility of simulation training modalities before integrating them into training curricula.</p

    The Effect of Luminance on Depth Perception in Augmented Reality Guided Laparoscopic Surgery

    Get PDF
    Depth perception is a major issue in surgical augmented reality (AR) with limited research conducted in this scientific area. This study establishes a relationship between luminance and depth perception. This can be used to improve visualisation design for AR overlay in laparoscopic surgery, providing surgeons a more accurate perception of the anatomy intraoperatively. Two experiments were conducted to determine this relationship. First, an online study with 59 participants from the general public, and second, an in-person study with 10 surgeons as participants. We developed 2 open-source software tools utilising SciKit-Surgery libraries to enable these studies and any future research. Our findings demonstrate that the higher the relative luminance, the closer a structure is perceived to the operating camera. Furthermore, the higher the luminance contrast between the two structures, the higher the depth distance perceived. The quantitative results from both experiments are in agreement, indicating that online recruitment of the general public can be helpful in similar studies. An observation made by the surgeons from the in-person study was that the light source used in laparoscopic surgery plays a role in depth perception. This is due to its varying positioning and brightness which could affect the perception of the overlaid AR. We found that luminance directly correlates with depth perception for both surgeons and the general public, regardless of other depth cues. Future research may focus on comparing different colours used in surgical AR and using a mock operating room (OR) with varying light sources and positions
    • …
    corecore