368 research outputs found

    Mesoscopic modeling of a two-phase flow in the presence of boundaries: the Contact Angle

    Get PDF
    We present a mesoscopic model, based on the Boltzmann Equation, for the interaction between a solid wall and a non-ideal fluid. We present an analytic derivation of the contact angle in terms of the surface tension between the liquid-gas, the liquid-solid and the gas-solid phases. We study the dependency of the contact angle on the two free parameters of the model, which determine the interaction between the fluid and the boundaries, i.e. the equivalent of the wall density and of the wall-fluid potential in Molecular Dynamics studies. We compare the analytical results obtained in the hydrodynamical limit for the density profile and for the surface tension expression with the numerical simulations. We compare also our two-phase approach with some exact results for a pure hydrodynamical incompressible fluid based on Navier-Stokes equations with boundary conditions made up of alternating slip and no-slip strips. Finally, we show how to overcome some theoretical limitations connected with a discretized Boltzmann scheme and we discuss the equivalence between the surface tension defined in terms of the mechanical equilibrium and in terms of the Maxwell construction.Comment: 29 pages, 12 figure

    Phase transition and percolation in Gibbsian particle models

    Full text link
    We discuss the interrelation between phase transitions in interacting lattice or continuum models, and the existence of infinite clusters in suitable random-graph models. In particular, we describe a random-geometric approach to the phase transition in the continuum Ising model of two species of particles with soft or hard interspecies repulsion. We comment also on the related area-interaction process and on perfect simulation.Comment: Survey article, 25 page

    Profile and width of rough interfaces

    Full text link
    In the context of Landau theory and its field theoretical refinements, interfaces between coexisting phases are described by intrinsic profiles. These intrinsic interface profiles, however, are neither directly accessible by experiment nor by computer simulation as they are broadened by long-wavelength capillary waves. In this paper we study the separation of the small scale intrinsic structure from the large scale capillary wave fluctuations in the Monte Carlo simulated three-dimensional Ising model. To this purpose, a blocking procedure is applied, using the block size as a variable cutoff, and a translationally invariant method to determine the interface position of strongly fluctuating profiles on small length scales is introduced. While the capillary wave picture is confirmed on large length scales and its limit of validity is estimated, an intrinsic regime is, contrary to expectations, not observed.Comment: 18 pages, 4 Postscript figures, LaTeX2e, formulation of sec.3.2 improved, 1 reference adde

    Histogram analysis as a method for determining the line tension by Monte-Carlo simulations

    Full text link
    A method is proposed for determining the line tension, which is the main physical characteristic of a three-phase contact region, by Monte-Carlo (MC) simulations. The key idea of the proposed method is that if a three-phase equilibrium involves a three-phase contact region, the probability distribution of states of a system as a function of two order parameters depends not only on the surface tension, but also on the line tension. This probability distribution can be obtained as a normalized histogram by appropriate MC simulations, so one can use the combination of histogram analysis and finite-size scaling to study the properties of a three phase contact region. Every histogram and results extracted therefrom will depend on the size of the simulated system. Carrying out MC simulations for a series of system sizes and extrapolating the results, obtained from the corresponding series of histograms, to infinite size, one can determine the line tension of the three phase contact region and the interfacial tensions of all three interfaces (and hence the contact angles) in an infinite system. To illustrate the proposed method, it is applied to the three-dimensional ternary fluid mixture, in which molecular pairs of like species do not interact whereas those of unlike species interact as hard spheres. The simulated results are in agreement with expectations

    The random geometry of equilibrium phases

    Full text link
    This is a (long) survey about applications of percolation theory in equilibrium statistical mechanics. The chapters are as follows: 1. Introduction 2. Equilibrium phases 3. Some models 4. Coupling and stochastic domination 5. Percolation 6. Random-cluster representations 7. Uniqueness and exponential mixing from non-percolation 8. Phase transition and percolation 9. Random interactions 10. Continuum modelsComment: 118 pages. Addresses: [email protected] http://www.mathematik.uni-muenchen.de/~georgii.html [email protected] http://www.math.chalmers.se/~olleh [email protected]

    Ordering and Demixing Transitions in Multicomponent Widom-Rowlinson Models

    Full text link
    We use Monte Carlo techniques and analytical methods to study the phase diagram of multicomponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M between two and six there is a direct transition from the gas phase at z < z_d (M) to a demixed phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In this phase, which is driven by entropy, particles, independent of species, preferentially occupy one of the sublattices, i.e. spatial symmetry but not particle symmetry is broken. The transition at z_d(M) appears to be first order for M \geq 5 putting it in the Potts model universality class. For large M the transition between the crystalline and demixed phase at z_d(M) can be proven to be first order with z_d(M) \sim M-2 + 1/M + ..., while z_c(M) is argued to behave as \mu_{cr}/M, with \mu_{cr} the value of the fugacity at which the one component hard square lattice gas has a transition, and to be always of the Ising type. Explicit calculations for the Bethe lattice with the coordination number q=4 give results similar to those for the square lattice except that the transition at z_d(M) becomes first order at M>2. This happens for all q, consistent with the model being in the Potts universality class.Comment: 26 pages, 15 postscript figure

    Surface tension of the Widom-Rowlinson model

    Get PDF
    11 pags., 5 figs., 3 tabs.We consider the computation of the surface tension of the fluid-fluid interface for the Widom-Rowlinson [J. Chem. Phys. 52, 1670 (1970)] binary mixture from direct simulation of the inhomogeneous system. We make use of the standard mechanical route, in which the surface tension follows from the computation of the normal and tangential components of the pressure tensor of the system. In addition to the usual approach, which involves simulations of the inhomogeneous system in the canonical ensemble, we also consider the computation of the surface tension in an ensemble where the pressure perpendicular (normal) to the planar interface is kept fixed. Both approaches are seen to provide consistent values of the interfacial tension. The issue of the system-size dependence of the surface tension is addressed. In addition, simulations of the fluid-fluid coexistence properties of the mixture are performed in the semigrand canonical ensemble. Our results are compared with existing data of the Widom-Rowlinson mixture and are also examined in the light of the vapor-liquid equilibrium of the thermodynamically equivalent one-component penetrable sphere model. © 2007 American Institute of Physics.Financial support is due to the Spanish Dirección General de Investigación Project Nos. FIS2004-06627-C02-01 E.d.M. and FIS2004-02954-C03-01 N.G.A. and from Universidad de Huelva and Junta de Andalucía. Additional funding from the Dirección General de Universidades e Investigación Comunidad de Madrid, Spain under the MOSSNOHO-CM program Grant No. S0505/ESP/0299 and from the Engineering and Physical Sciences EPSRC of the UK Grant Nos. GR/N20317, GR/N03358, GR/N35991, GR/R09497, and EP/E016340, the Joint Research Equipment Initiative JREI GR/M94427, and the Royal Society Wolfson Foundation refurbishment grant is also acknowledged. Finally we are grateful to the Royal Society for the award of a International Short Visit grant which has facilitated the collaborative work
    corecore