87,235 research outputs found

    Operations on Automata with All States Final

    Full text link
    We study the complexity of basic regular operations on languages represented by incomplete deterministic or nondeterministic automata, in which all states are final. Such languages are known to be prefix-closed. We get tight bounds on both incomplete and nondeterministic state complexity of complement, intersection, union, concatenation, star, and reversal on prefix-closed languages.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Operational State Complexity under Parikh Equivalence

    Get PDF
    We investigate, under Parikh equivalence, the state complexity of some language operations which preserve regularity. For union, concatenation, Kleene star, complement, intersection, shue, and reversal, we obtain a polynomial state complexity over any xed alphabet, in contrast to the intrinsic exponential state complexity of some of these operations in the classical version. For projection we prove a superpolynomial state complexity, which is lower than the exponential one of the corresponding classical operation. We also prove that for each two deterministic automata A and B it is possible to obtain a deterministic automaton with a polynomial number of states whose accepted language has as Parikh image the intersection of the Parikh images of the languages accepted by A and B

    Universal Disjunctive Concatenation and Star

    Get PDF
    Two language operations that can be expressed by suitably combining complement with concatenation and star, respectively, are introduced. The state complexity of those operations on regular languages is investigated. In the deterministic case, optimal exponential state gaps are proved for both operations. In the nondeterministic case, for one operation an optimal exponential gap is also proved, while for the other operation an exponential upper bound is obtained. (c) Springer International Publishing Switzerland 2015

    Quotient Complexity Of Closed Languages

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00224-013-9515-7A language L is prefix-closed if, whenever a word w is in L, then every prefix of w is also in L. We define suffix-, factor-, and subword-closed languages in an analogous way, where by factor we mean contiguous subsequence, and by subword we mean scattered subsequence. We study the state complexity (which we prefer to call quotient complexity) of operations on prefix-, suffix-, factor-, and subword-closed languages. We find tight upper bounds on the complexity of the subword-closure of arbitrary languages, and on the complexity of boolean operations, concatenation, star, and reversal in each of the four classes of closed languages. We show that repeated applications of positive closure and complement to a closed language result in at most four distinct languages, while Kleene closure and complement give at most eight.Natural Sciences and Engineering Research Council of Canada [OGP0000871]VEGA grant [2/0183/11][APVV-0035-10

    On the Structure and Complexity of Rational Sets of Regular Languages

    Get PDF
    In a recent thread of papers, we have introduced FQL, a precise specification language for test coverage, and developed the test case generation engine FShell for ANSI C. In essence, an FQL test specification amounts to a set of regular languages, each of which has to be matched by at least one test execution. To describe such sets of regular languages, the FQL semantics uses an automata-theoretic concept known as rational sets of regular languages (RSRLs). RSRLs are automata whose alphabet consists of regular expressions. Thus, the language accepted by the automaton is a set of regular expressions. In this paper, we study RSRLs from a theoretic point of view. More specifically, we analyze RSRL closure properties under common set theoretic operations, and the complexity of membership checking, i.e., whether a regular language is an element of a RSRL. For all questions we investigate both the general case and the case of finite sets of regular languages. Although a few properties are left as open problems, the paper provides a systematic semantic foundation for the test specification language FQL

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,zΣx,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669
    corecore