707 research outputs found

    Dynamics of Patterns

    Get PDF
    This workshop focused on the dynamics of nonlinear waves and spatio-temporal patterns, which arise in functional and partial differential equations. Among the outstanding problems in this area are the dynamical selection of patterns, gaining a theoretical understanding of transient dynamics, the nonlinear stability of patterns in unbounded domains, and the development of efficient numerical techniques to capture specific dynamical effects

    Patterns formation in axially symmetric Landau-Lifshitz-Gilbert-Slonczewski equations

    Full text link
    The Landau-Lifshitz-Gilbert-Slonczewski equation describes magnetization dynamics in the presence of an applied field and a spin polarized current. In the case of axial symmetry and with focus on one space dimension, we investigate the emergence of space-time patterns in the form of wavetrains and coherent structures, whose local wavenumber varies in space. A major part of this study concerns existence and stability of wavetrains and of front- and domain wall-type coherent structures whose profiles asymptote to wavetrains or the constant up-/down-magnetizations. For certain polarization the Slonczewski term can be removed which allows for a more complete charaterization, including soliton-type solutions. Decisive for the solution structure is the polarization parameter as well as size of anisotropy compared with the difference of field intensity and current intensity normalized by the damping

    Turing patterns in parabolic systems of conservation laws and numerically observed stability of periodic waves

    Full text link
    Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from sub-critical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram-- specifically, determination of rigorous Eckhaus-type stability conditions-- remains an interesting open problem.Comment: 12 pages, 20 figure
    • …
    corecore