410 research outputs found

    Numerical studies in hydrodynamics stability theory

    Get PDF

    Fast numerical methods for waves in periodic media

    Get PDF
    Periodic media problems widely exist in many modern application areas like semiconductor nanostructures (e.g.\ quantum dots and nanocrystals), semi-conductor superlattices, photonic crystals (PC) structures, meta materials or Bragg gratings of surface plasmon polariton (SPP) waveguides, etc. Often these application problems are modeled by partial differential equations with periodic coefficients and/or periodic geometries. In order to numerically solve these periodic structure problems efficiently one usually confines the spatial domain to a bounded computational domain (i.e.\ in a neighborhood of the region of physical interest). Hereby, the usual strategy is to introduce so-called \emph{artificial boundaries} and impose suitable boundary conditions. For wave-like equations, the ideal boundary conditions should not only lead to well-posed problems, but also mimic the perfect absorption of waves traveling out of the computational domain through the artificial boundaries. In the first part of this chapter we present a novel analytical impedance expression for general second order ODE problems with periodic coefficients. This new expression for the kernel of the Dirichlet-to-Neumann mapping of the artificial boundary conditions is then used for computing the bound states of the Schr\"odinger operator with periodic potentials at infinity. Other potential applications are associated with the exact artificial boundary conditions for some time-dependent problems with periodic structures. As an example, a two-dimensional hyperbolic equation modeling the TM polarization of the electromagnetic field with a periodic dielectric permittivity is considered. In the second part of this chapter we present a new numerical technique for solving periodic structure problems. This novel approach possesses several advantages. First, it allows for a fast evaluation of the Sommerfeld-to-Sommerfeld operator for periodic array problems. Secondly, this computational method can also be used for bi-periodic structure problems with local defects. In the sequel we consider several problems, such as the exterior elliptic problems with strong coercivity, the time-dependent Schr\"odinger equation and the Helmholtz equation with damping. Finally, in the third part we consider periodic arrays that are structures consisting of geometrically identical subdomains, usually called periodic cells. We use the Helmholtz equation as a model equation and consider the definition and evaluation of the exact boundary mappings for general semi-infinite arrays that are periodic in one direction for any real wavenumber. The well-posedness of the Helmholtz equation is established via the \emph{limiting absorption principle} (LABP). An algorithm based on the doubling procedure of the second part of this chapter and an extrapolation method is proposed to construct the exact Sommerfeld-to-Sommerfeld boundary mapping. This new algorithm benefits from its robustness and the simplicity of implementation. But it also suffers from the high computational cost and the resonance wave numbers. To overcome these shortcomings, we propose another algorithm based on a conjecture about the asymptotic behaviour of limiting absorption principle solutions. The price we have to pay is the resolution of some generalized eigenvalue problem, but still the overall computational cost is significantly reduced. Numerical evidences show that this algorithm presents theoretically the same results as the first algorithm. Moreover, some quantitative comparisons between these two algorithms are given

    Research on reconfigurable control for a hovering PVTOL aircraft

    Get PDF
    This paper presents a novel reconfigurable control method for the planar vertical take-off and landing (PVTOL) aircraft when actuator faults occur. According to the position subsystem within the multivariable coupling, and the series between subsystems of position and attitude, an active disturbance rejection controller (ADRC) is used to counteract the adverse effects when actuator faults occur. The controller is cascade and ensures the input value of the controlled system can be tracked accurately. The coordinate transformation method is used for model decoupling due to the severe coupling. In addition, the Taylor differentiator is designed to improve the control precision based on the detailed research for tracking differentiator. The stability and safety of the aircraft is much improved in the event of actuator faults. Finally, the simulation results are given to show the effectiveness and performance of the developed method

    Nonlinear waves in hyperbolic metamaterials: focus on solitons and rogues

    Get PDF
    The investigation of hyperbolic metamaterials, shows that metal layers that are part of graphene structures, and also types I and II layered systems, are readily controlled. Since graphene is a nicely conducting sheet it can be easily managed. The literature only eveals a, limited, systematic, approach to the onset of nonlinearity, especially for the methodology based around the famous nonlinear Schrödinger equation [NLSE]. This presentation reveals nonlinear outcomes involving solitons sustained by the popular, and more straightforward to fabricate, type II hyperbolic metamaterials. The NLSE for type II metatamaterials is developed and nonlinear, non-stationary diffraction and dispersion in such important, and active, planar hyperbolic metamaterials is developed. For rogue waves in metamaterials only a few recent numerical studies exist. The basic model assumes a uniform background to which is added a time-evolving perturbation in order to witness the growth of nonlinear waves out of nowhere. This is discussed here using a new NLSE appropriate to hyperbolic metamaterials that would normally produce temporal solitons. The main conclusion is that new pathways for rogue waves can emerge in the form of Peregrine solitons (and near-Peregrines) within a nonlinear hyperbolic metamaterial, based upon double negative guidelines, and where, potentially, magnetooptic control could be practically exerted

    Numerical and Analytical Methods in Electromagnetics

    Get PDF
    Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics

    Light Beams in Liquid Crystals

    Get PDF
    This reprint collects recent articles published on "Light Beams in Liquid Crystals", both research and review contributions, with specific emphasis on liquid crystals in the nematic mesophase. The editors, Prof. Gaetano Assanto (NooEL, University of Rome "Roma Tre") and Prof. Noel F. Smyth (School of Mathematics, University of Edinburgh), are among the most active experts worldwide in nonlinear optics of nematic liquid crystals, particularly reorientational optical solitons ("nematicons") and other all-optical effects

    Light Beams in Liquid Crystal

    Get PDF

    Hadron models and related New Energy issues

    Get PDF
    The present book covers a wide-range of issues from alternative hadron models to their likely implications in New Energy research, including alternative interpretation of lowenergy reaction (coldfusion) phenomena. The authors explored some new approaches to describe novel phenomena in particle physics. M Pitkanen introduces his nuclear string hypothesis derived from his Topological Geometrodynamics theory, while E. Goldfain discusses a number of nonlinear dynamics methods, including bifurcation, pattern formation (complex GinzburgLandau equation) to describe elementary particle masses. Fu Yuhua discusses a plausible method for prediction of phenomena related to New Energy development. F. Smarandache discusses his unmatter hypothesis, and A. Yefremov et al. discuss Yang-Mills field from Quaternion Space Geometry. Diego Rapoport discusses theoretical link between Torsion fields and Hadronic Mechanic. A.H. Phillips discusses semiconductor nanodevices, while V. and A. Boju discuss Digital Discrete and Combinatorial methods and their likely implications in New Energy research. Pavel Pintr et al. describe planetary orbit distance from modified Schrödinger equation, and M. Pereira discusses his new Hypergeometrical description of Standard Model of elementary particles. The present volume will be suitable for researchers interested in New Energy issues, in particular their link with alternative hadron models and interpretation

    Experiments on synthetic dimensions in photonics

    Get PDF
    The first and introductory section of the dissertation presents the working principle of a one- and two-dimensional photonic mesh lattice based on the time-multiplexing technique. The basis of a random walk interrelated to the corresponding light and quantum walk is comprehensively discussed as well. The second part of the dissertation consists of three experiments on a one-dimensional photonic mesh lattice. Firstly, the Kapitza-based guiding light project models the Kapitza potential as a continuous Pauli-Schrödinger-like equation and presents an experimental observation of light localization when the transverse modulation is bell-shaped but with a vanishing average along the propagation direction. Secondly, the optical thermodynamics project experimentally demonstrates for the first time that any given initial modal occupancy reaches thermal equilibrium by following a Rayleigh-Jeans distribution when propagates through a multimodal photonic mesh lattice with weak nonlinearity. Remarkably, the final modal occupancy possesses a unique temperature and chemical potential that have nothing to do with the actual thermal environment. Finally, the quantum interference project discusses an experimental all-optical architecture based on a coupled-fiber loop for generating and processing time-bin entangled single-photon pairs. Besides, it shows coincidence-to-accidental ratio and quantum interference measurements relying on the phase modulation of those time bins. The third part of the dissertation comprises two experiments on a two-dimensional photonic mesh lattice. The first project discusses the experimental realization of a two-dimensional mesh lattice employing short- and long-range interaction. To some extent, the second project presents a nonconservative system based on a two-dimensional photonic mesh lattice exploiting parity-time (PT) symmetry
    corecore