612 research outputs found

    Improved Nyquist pulse shaping filters for generalized frequency division multiplexing

    Get PDF
    Generalized Frequency-Division Multiplexing (GFDM) is one of the multicarrier modulation schemes currently under study for next generation 5G cellular networks. One of the main characteristics of GFDM is the low out of band emission that is achieved by means of a flexible time-domain pulse shaping of individual subcarriers. In the paper, we propose to use improved Nyquist pulse shaping filters which have been originally introduced in the context of single-carrier modulation schemes for reducing the sensitivity to symbol timing error due to their higher eye opening and smaller maximum distortion. Here we consider their use in GFDM and evaluate their symbol error rate (SER) performance in case of 16-QAM transmission over an additive white Gaussian noise channel. Moreover, we also considered the concept of the wavelet for better time-frequency localization of the pulse shaping filters by using the Meyer auxiliary function. Numerical results are reported to demonstrate the superior SER performance achieved by the proposed improved Nyquist pulse shaping filters in comparison to that achieved with conventional Nyquist pulse shaping filters

    On the application of raised-cosine wavelets for multicarrier systems design

    Get PDF
    YesNew orthogonal wavelet transforms can be designed by changing the wavelet basis functions or by constructing new low-pass filters (LPF). One family of wavelet may appeal, in use, to a particular application than another. In this study, the wavelet transform based on raisedcosine spectrum is used as an independent orthogonal wavelet to study multicarrier modulation behaviour over multipath channel environment. Then, the raised-cosine wavelet is compared with other well-known orthogonal wavelets that are used, also, to build multicarrier modulation systems. Traditional orthogonal wavelets do not have side-lobes, while the raised-cosine wavelets have lots of side-lobes; these characteristics influence the wavelet behaviour. It will be shown that the raised-cosine wavelet transform, as an orthogonal wavelet, does not support the design of multicarrier application well like the existing well-known orthogonal wavelets

    Optimum receiver design for broadband Doppler compensation in multipath/Doppler channels with rational orthogonal wavelet signaling

    Get PDF
    Copyright © 2007 IEEEIn this paper, we address the issue of signal transmission and Doppler compensation in multipath/Doppler channels. Based on a wavelet-based broadband Doppler compensation structure, this paper presents the design and performance characterization of optimum receivers for this class of communication systems. The wavelet-based Doppler compensation structure takes account of the coexistence of multiple Doppler scales in a multipath/Doppler channel and captures the information carried by multiple scaled replicas of the transmitted signal rather than an estimation of an average Doppler as in conventional Doppler compensation schemes. The transmitted signal is recovered by the perfect reconstruction (PR) wavelet analysis filter bank (FB). We demonstrate that with rational orthogonal wavelet signaling, the proposed communication structure corresponds to a Lth-order diversity system, where L is the number of dominant transmission paths. Two receiver designs for pulse amplitude modulation (PAM) signal transmission are presented. Both receiver designs are optimal under the maximum-likelihood (ML) criterion for diversity combination and symbol detection. Good performance is achieved for both receivers in combating the Doppler effect and intersymbol interference (ISI) caused by multipath while mitigating the channel noise. In particular, the second receiver design overcomes symbol timing sensitivities present in the first design at reasonable cost to performance.Limin Yu and Langford B. Whit

    Construction of M - Band bandlimited wavelets for orthogonal decomposition

    Get PDF
    While bandlimited wavelets and associated IIR filters have shown serious potential in areas of pattern recognition and communications, the dyadic Meyer wavelet is the only known approach to construct bandlimited orthogonal decomposition. The sine scaling function and wavelet are a special case of the Meyer. Previous works have proposed a M - Band extension of the Meyer wavelet without solving the problem. One key contribution of this thesis is the derivation of the correct bandlimits for the scaling function and wavelets to guarantee an orthogonal basis. In addition, the actual construction of the wavelets based upon these bandlimits is developed. A composite wavelet will be derived based on the M scale relationships from which we will extract the wavelet functions. A proper solution to this task is proposed which will generate associated filters with the knowledge of the scaling function and the constraints for Mband orthogonality

    Wavelet based design of digital multichannel communications systems

    Get PDF
    The huge penetration of the personal communications systems in the market is constantly presenting new challenges to the research, aimed at satisfying people's needs and requirements for effective communication systems. At present, the cellular telephone network is perhaps the most evident example of communication system that has had a great impact on the lives of ordinary people and, at the same time, is the subject of interest of many researchers both at academic and industrial level. For the future, one of the main challenges in telecommunications will be the provision of ubiquitous broadband tetherless integrated services to mobile users. Such a pretentious goal cannot be achieved without a continuous research facing such problems as service quality, complete mobility support, and affordable complexity that are still open problems. However, present telecommunication problems are not only a matter of implementation or development of new services, exploiting a totally assessed doctrine. In order to respond to the mobility of the users personal communication systems have to deal with the wireless communication channel whereby mobility and non-stationarity of the propagation conditions require a stochastic description of the channel parameters. While this fact can be viewed as strong limitation to the development of a solid theory whose validity can be assesed in practice, on the other hand allows for an investigation and study of novel communication schemes, sometimes encompassing basic aspects of digital communications. This thesis, is the result of a research work that has investigated one of the basic building block of every communication systems, the modulation scheme, and the design of the pulse shape carrying the digital information. We have studied the design of multichannel communication scheme exploiting the mathematical theory of wavelets. Such a theory, developed recently, has had a great impact in many fields of engineering and of other scientific disciplines. In particular, wavelet theory has become very popular in the signal processing area; in fact it is a flexible toolbox for signal analysis allowing effective representation of signals for features extraction purposes. The main features that make wavelet waveforms suitable to be used as shaping pulses for modulation are their substantial compact support both in the time and frequency domains, and the fact that they are ISI-free pulses over frequency flat channels. The study presented in this thesis is focused on application of wavelet theory to design high-efficiency multichannel communication schemes and to the performance evaluation over linear and non-linear channels. We present a general method to design wavelet based multichannel communication schemes that we denoted Wavelet Orthogonal Frequency Division Multiplexing (WOFDM). We show that such schemes, having a largerspectral efficiency for a small number of channels, are a valid alternative to the classical OFDM. Potential advantage of wavelet modulation are shown presenting other applications examined in this thesis: a joint use of WOFDM and Trellis Coded Modulation to shape the power spectrum in order to match a frequency selective channel and minimize distortion, and application to spread spectrum modulation. Particular attention has been devoted to the timing recovery problem in multichannel communication schemes, exploiting the timing information of the different subchannels to improve the error variance in estimation of the sampling instant leading to a reduction of the adjacent channels interferenc

    Improving GFDM Symbol Error Rate Performance using Better than Nyquist Pulse Shaping Filters

    Get PDF
    Fourth generation (4G) cellular systems have been optimized to provide high data rates and reliable coverage to mobile users. New waveforms at the physical layer are needed. Generalized frequency division multiplexing (GFDM) is a candidate modulation for the fifth generation (5G) standard based on multi-branch multicarrier filter bank approach. A main characteristic of GFDM is its low out of band emission, achieved by means of a flexible time-domain pulse shaping of individual subcarriers. In this paper, the influence of the improved Better than Nyquist pulse shaping filters on symbol error rate (SER) performance of the GFDM system in the case of zero forcing (ZF) receiver is investigated. We considered their use in GFDM to evaluate the impact on SER performance in case of 16-QAM transmission over an additive white Gaussian noise channel. Moreover, we also considered the concept of the wavelet for better time-frequency localization of the pulse shaping filters by using the Meyer auxiliary function. Numerical results are reported to demonstrate the superior SER performance achieved

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference
    • …
    corecore