310 research outputs found

    The square of a planar cubic graph is 77-colorable

    Get PDF
    We prove the conjecture made by G.Wegner in 1977 that the square of every planar, cubic graph is 77-colorable. Here, 77 cannot be replaced by 66

    S-Packing Colorings of Cubic Graphs

    Full text link
    Given a non-decreasing sequence S=(s_1,s_2,…,s_k)S=(s\_1,s\_2, \ldots, s\_k) of positive integers, an {\em SS-packing coloring} of a graph GG is a mapping cc from V(G)V(G) to {s_1,s_2,…,s_k}\{s\_1,s\_2, \ldots, s\_k\} such that any two vertices with color s_is\_i are at mutual distance greater than s_is\_i, 1≤i≤k1\le i\le k. This paper studies SS-packing colorings of (sub)cubic graphs. We prove that subcubic graphs are (1,2,2,2,2,2,2)(1,2,2,2,2,2,2)-packing colorable and (1,1,2,2,3)(1,1,2,2,3)-packing colorable. For subdivisions of subcubic graphs we derive sharper bounds, and we provide an example of a cubic graph of order 3838 which is not (1,2,…,12)(1,2,\ldots,12)-packing colorable

    A Victorian Age Proof of the Four Color Theorem

    Full text link
    In this paper we have investigated some old issues concerning four color map problem. We have given a general method for constructing counter-examples to Kempe's proof of the four color theorem and then show that all counterexamples can be rule out by re-constructing special 2-colored two paths decomposition in the form of a double-spiral chain of the maximal planar graph. In the second part of the paper we have given an algorithmic proof of the four color theorem which is based only on the coloring faces (regions) of a cubic planar maps. Our algorithmic proof has been given in three steps. The first two steps are the maximal mono-chromatic and then maximal dichromatic coloring of the faces in such a way that the resulting uncolored (white) regions of the incomplete two-colored map induce no odd-cycles so that in the (final) third step four coloring of the map has been obtained almost trivially.Comment: 27 pages, 18 figures, revised versio

    Planar graph coloring avoiding monochromatic subgraphs: trees and paths make things difficult

    Get PDF
    We consider the problem of coloring a planar graph with the minimum number of colors such that each color class avoids one or more forbidden graphs as subgraphs. We perform a detailed study of the computational complexity of this problem

    Some Results on incidence coloring, star arboricity and domination number

    Full text link
    Two inequalities bridging the three isolated graph invariants, incidence chromatic number, star arboricity and domination number, were established. Consequently, we deduced an upper bound and a lower bound of the incidence chromatic number for all graphs. Using these bounds, we further reduced the upper bound of the incidence chromatic number of planar graphs and showed that cubic graphs with orders not divisible by four are not 4-incidence colorable. The incidence chromatic numbers of Cartesian product, join and union of graphs were also determined.Comment: 8 page
    • …
    corecore