245 research outputs found

    The Investigation of Efficiency of Physical Phenomena Modelling Using Differential Equations on Distributed Systems

    Get PDF
    This work is dedicated to development of mathematical modelling software. In this dissertation numerical methods and algorithms are investigated in software making context. While applying a numerical method it is important to take into account the limited computer resources, the architecture of these resources and how do methods affect software robustness. Three main aspects of this investigation are that software implementation must be efficient, robust and be able to utilize specific hardware resources. The hardware specificity in this work is related to distributed computations of different types: single CPU with multiple cores, multiple CPUs with multiple cores and highly parallel multithreaded GPU device. The investigation is done in three directions: GPU usage for 3D FDTD calculations, FVM method usage to implement efficient calculations of a very specific heat transferring problem, and development of special techniques for software for specific bacteria self organization problem when the results are sensitive to numerical methods, initial data and even computer round-off errors. All these directions are dedicated to create correct technological components that make a software implementation robust and efficient. The time prediction model for 3D FDTD calculations is proposed, which lets to evaluate the efficiency of different GPUs. A reasonable speedup with GPU comparing to CPU is obtained. For FVM implementation the OpenFOAM open source software is selected as a basis for implementation of calculations and a few algorithms and their modifications to solve efficiency issues are proposed. The FVM parallel solver is implemented and analyzed, it is adapted to heterogeneous cluster Vilkas. To create robust software for simulation of bacteria self organization mathematically robust methods are applied and results are analyzed, the algorithm is modified for parallel computations

    Analysis of a chemo-repulsion model with nonlinear production: The continuous problem and unconditionally energy stable fully discrete schemes

    Get PDF
    We consider the following repulsive-productive chemotaxis model: Let p(1,2)p\in (1,2), find u0u \geq 0, the cell density, and v0v \geq 0, the chemical concentration, satisfying \begin{equation}\label{C5:Am} \left\{ \begin{array} [c]{lll} \partial_t u - \Delta u - \nabla\cdot (u\nabla v)=0 \ \ \mbox{in}\ \Omega,\ t>0,\\ \partial_t v - \Delta v + v = u^p \ \ \mbox{in}\ \Omega,\ t>0, \end{array} \right. \end{equation} in a bounded domain ΩRd\Omega\subseteq \mathbb{R}^d, d=2,3d=2,3. By using a regularization technique, we prove the existence of solutions of this problem. Moreover, we propose three fully discrete Finite Element (FE) nonlinear approximations, where the first one is defined in the variables (u,v)(u,v), and the second and third ones by introducing σ=v{\boldsymbol\sigma}=\nabla v as an auxiliary variable. We prove some unconditional properties such as mass-conservation, energy-stability and solvability of the schemes. Finally, we compare the behavior of the schemes throughout several numerical simulations and give some conclusions.Comment: arXiv admin note: substantial text overlap with arXiv:1807.0111

    Reactive Flows in Deformable, Complex Media

    Get PDF
    Many processes of highest actuality in the real life are described through systems of equations posed in complex domains. Of particular interest is the situation when the domain is changing in time, undergoing deformations that depend on the unknown quantities of the model. Such kind of problems are encountered as mathematical models in the subsurface, material science, or biological systems.The emerging mathematical models account for various processes at different scales, and the key issue is to integrate the domain deformation in the multi-scale context. The focus in this workshop was on novel techniques and ideas in the mathematical modelling, analysis, the numerical discretization and the upscaling of problems as described above

    Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains

    Get PDF
    Reaction-diffusion systems have been widely studied in developmental biology, chemistry and more recently in financial mathematics. Most of these systems comprise nonlinear reaction terms which makes it difficult to find closed form solutions. It therefore becomes convenient to look for numerical solutions: finite difference, finite element, finite volume and spectral methods are typical examples of the numerical methods used. Most of these methods are locally based schemes. We examine the implications of mesh structure on numerically computed solutions of a well-studied reaction-diffusion model system on two-dimensional fixed and growing domains. The incorporation of domain growth creates an additional parameter – the grid-point velocity – and this greatly influences the selection of certain symmetric solutions for the ADI finite difference scheme when a uniform square mesh structure is used. Domain growth coupled with grid-point velocity on a uniform square mesh stabilises certain patterns which are however very sensitive to any kind of perturbation in mesh structure. We compare our results to those obtained by use of finite elements on unstructured triangular elements

    A chemorepulsion model with superlinear production: analysis of the continuous problem and two approximately positive and energy-stable schemes

    Get PDF
    We consider the following repulsive-productive chemotaxis model: find 0, the cell density, and 0, the chemical concentration, satisfying 0 in 0 in 0 (1) with 1 2 , a bounded domain ( 1 2 3), endowed with non-flux boundary conditions. By using a regularization technique, we prove the existence of global in time weak solutions of (1) which is regular and unique for 1 2. Moreover, we propose two fully discrete Finite Element (FE) nonlinear schemes, the first one defined in the variables under structured meshes, and the second one by using the auxiliary variable and defined in general meshes. We prove some unconditional properties for both schemes, such as mass-conservation, solvability, energy-stability and approximated positivity. Finally, we compare the behavior of these schemes with respect to the classical FE backward Euler scheme throughout several numerical simulations and give some conclusions

    pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems

    Full text link
    pde2path is a free and easy to use Matlab continuation/bifurcation package for elliptic systems of PDEs with arbitrary many components, on general two dimensional domains, and with rather general boundary conditions. The package is based on the FEM of the Matlab pdetoolbox, and is explained by a number of examples, including Bratu's problem, the Schnakenberg model, Rayleigh-Benard convection, and von Karman plate equations. These serve as templates to study new problems, for which the user has to provide, via Matlab function files, a description of the geometry, the boundary conditions, the coefficients of the PDE, and a rough initial guess of a solution. The basic algorithm is a one parameter arclength continuation with optional bifurcation detection and branch-switching. Stability calculations, error control and mesh-handling, and some elementary time-integration for the associated parabolic problem are also supported. The continuation, branch-switching, plotting etc are performed via Matlab command-line function calls guided by the AUTO style. The software can be downloaded from www.staff.uni-oldenburg.de/hannes.uecker/pde2path, where also an online documentation of the software is provided such that in this paper we focus more on the mathematics and the example systems

    Geometric partial differential equations: Surface and bulk processes

    Get PDF
    The workshop brought together experts representing a wide range of topics in geometric partial differential equations ranging from analyis over numerical simulation to real-life applications. The main themes of the conference were the analysis of curvature energies, new developments in pdes on surfaces and the treatment of coupled bulk/surface problems

    Stationary Multiple Spots for Reaction-Diffusion Systems

    Get PDF
    In this paper, we review analytical methods for a rigorous study of the existence and stability of stationary, multiple spots for reaction-diffusion systems. We will consider two classes of reaction-diffusion systems: activator-inhibitor systems (such as the Gierer-Meinhardt system) and activator-substrate systems (such as the Gray-Scott system or the Schnakenberg model). The main ideas are presented in the context of the Schnakenberg model, and these results are new to the literature. We will consider the systems in a two-dimensional, bounded and smooth domain for small diffusion constant of the activator. Existence of multi-spots is proved using tools from nonlinear functional analysis such as Liapunov-Schmidt reduction and fixed-point theorems. The amplitudes and positions of spots follow from this analysis. Stability is shown in two parts, for eigenvalues of order one and eigenvalues converging to zero, respectively. Eigenvalues of order one are studied by deriving their leading-order asymptotic behavior and reducing the eigenvalue problem to a nonlocal eigenvalue problem (NLEP). A study of the NLEP reveals a condition for the maximal number of stable spots. Eigenvalues converging to zero are investigated using a projection similar to Liapunov-Schmidt reduction and conditions on the positions for stable spots are derived. The Green's function of the Laplacian plays a central role in the analysis. The results are interpreted in the biological, chemical and ecological contexts. They are confirmed by numerical simulations
    corecore