346 research outputs found

    Computing the minimum distance between a point and a NURBS curve

    Get PDF
    International audienceA new method is presented for computing the minimum distance between a point and a NURBS curve. It utilizes a circular clipping technique to eliminate the curve parts outside a circle with the test point as its center point. The radius of the elimination circle becomes smaller and smaller during the subdivision process. A simple condition for terminating the subdivision process is provided, which leads to very few subdivision steps in the new method. Examples are shown to illustrate the efficiency and robustness of the new method

    Computing the minimum distance between two Bézier curves

    Get PDF
    International audienceA sweeping sphere clipping method is presented for computing the minimum distance between two Bézier curves. The sweeping sphere is constructed by rolling a sphere with its center point along a curve. The initial radius of the sweeping sphere can be set as the minimum distance between an end point and the other curve. The nearest point on a curve must be contained in the sweeping sphere along the other curve, and all of the parts outside the sweeping sphere can be eliminated. A simple sufficient condition when the nearest point is one of the two end points of a curve is provided, which turns the curve/curve case into a point/curve case and leads to higher efficiency. Examples are shown to illustrate efficiency and robustness of the new method

    Fast Isogeometric Boundary Element Method based on Independent Field Approximation

    Full text link
    An isogeometric boundary element method for problems in elasticity is presented, which is based on an independent approximation for the geometry, traction and displacement field. This enables a flexible choice of refinement strategies, permits an efficient evaluation of geometry related information, a mixed collocation scheme which deals with discontinuous tractions along non-smooth boundaries and a significant reduction of the right hand side of the system of equations for common boundary conditions. All these benefits are achieved without any loss of accuracy compared to conventional isogeometric formulations. The system matrices are approximated by means of hierarchical matrices to reduce the computational complexity for large scale analysis. For the required geometrical bisection of the domain, a strategy for the evaluation of bounding boxes containing the supports of NURBS basis functions is presented. The versatility and accuracy of the proposed methodology is demonstrated by convergence studies showing optimal rates and real world examples in two and three dimensions.Comment: 32 pages, 27 figure

    Computing the minimum distance between a point and a clamped B-spline surface

    Get PDF
    International audienceThe computation of the minimum distance between a point and a surface is important for the applications such as CAD/CAM, NC verification, robotics and computer graphics. This paper presents a spherical clipping method to compute the minimum distance between a point and a clamped B-spline surface. The surface patches outside the clipping sphere which do not contain the nearest point are eliminated. Another exclusion criterion whether the nearest point is on the boundary curves of the surface is employed, which is proved to be superior to previous comparable criteria. Examples are also shown to illustrate efficiency and correctness of the new method

    Conversion of B-rep CAD models into globally G<sup>1</sup> triangular splines

    Get PDF
    Existing techniques that convert B-rep (boundary representation) patches into Clough-Tocher splines guarantee watertight, that is C0, conversion results across B-rep edges. In contrast, our approach ensures global tangent-plane, that is G1, continuity of the converted B-rep CAD models. We achieve this by careful boundary curve and normal vector management, and by converting the input models into Shirman-Séquin macro-elements near their (trimmed) B-rep edges. We propose several different variants and compare them with respect to their locality, visual quality, and difference with the input B-rep CAD model. Although the same global G1 continuity can also be achieved by conversion techniques based on subdivision surfaces, our approach uses triangular splines and thus enjoys full compatibility with CAD

    Parametric Interpolation To Scattered Data [QA281. A995 2008 f rb].

    Get PDF
    Dua skema interpolasi berparameter yang mengandungi interpolasi global untuk data tersebar am dan interpolasi pengekalan-kepositifan setempat data tersebar positif dibincangkan. Two schemes of parametric interpolation consisting of a global scheme to interpolate general scattered data and a local positivity-preserving scheme to interpolate positive scattered data are described

    Reverse engineering of CAD models via clustering and approximate implicitization

    Full text link
    In applications like computer aided design, geometric models are often represented numerically as polynomial splines or NURBS, even when they originate from primitive geometry. For purposes such as redesign and isogeometric analysis, it is of interest to extract information about the underlying geometry through reverse engineering. In this work we develop a novel method to determine these primitive shapes by combining clustering analysis with approximate implicitization. The proposed method is automatic and can recover algebraic hypersurfaces of any degree in any dimension. In exact arithmetic, the algorithm returns exact results. All the required parameters, such as the implicit degree of the patches and the number of clusters of the model, are inferred using numerical approaches in order to obtain an algorithm that requires as little manual input as possible. The effectiveness, efficiency and robustness of the method are shown both in a theoretical analysis and in numerical examples implemented in Python
    corecore