44,435 research outputs found

    Some Special Cases in the Stability Analysis of Multi-Dimensional Time-Delay Systems Using The Matrix Lambert W function

    Full text link
    This paper revisits a recently developed methodology based on the matrix Lambert W function for the stability analysis of linear time invariant, time delay systems. By studying a particular, yet common, second order system, we show that in general there is no one to one correspondence between the branches of the matrix Lambert W function and the characteristic roots of the system. Furthermore, it is shown that under mild conditions only two branches suffice to find the complete spectrum of the system, and that the principal branch can be used to find several roots, and not the dominant root only, as stated in previous works. The results are first presented analytically, and then verified by numerical experiments

    Analytical results for a Fokker-Planck equation in the small noise limit

    Full text link
    We present analytical results for the lowest cumulants of a stochastic process described by a Fokker-Planck equation with nonlinear drift. We show that, in the limit of small fluctuations, the mean, the variance and the covariance of the process can be expressed in compact form with the help of the Lambert W function. As an application, we discuss the interplay of noise and nonlinearity far from equilibrium.Comment: 5 pages, 4 figure

    Electromagnetic surface wave propagation in a metallic wire and the Lambert WW function

    Full text link
    We revisit the solution due to Sommerfeld of a problem in classical electrodynamics, namely, that of the propagation of an electromagnetic axially symmetric surface wave (a low-attenuation single TM01_{01} mode) in a cylindrical metallic wire, and his iterative method to solve the transcendental equation that appears in the determination of the propagation wave number from the boundary conditions. We present an elementary analysis of the convergence of Sommerfeld's iterative solution of the approximate problem and compare it with both the numerical solution of the exact transcendental equation and the solution of the approximate problem by means of the Lambert WW function.Comment: REVTeX double column, 9 pages, 3 figures, minor differences between v3 and published version; "Editor's Pick" for June 2019 edition of AJ

    Quasi-normal frequencies: Key analytic results

    Full text link
    The study of exact quasi-normal modes [QNMs], and their associated quasi-normal frequencies [QNFs], has had a long and convoluted history - replete with many rediscoveries of previously known results. In this article we shall collect and survey a number of known analytic results, and develop several new analytic results - specifically we shall provide several new QNF results and estimates, in a form amenable for comparison with the extant literature. Apart from their intrinsic interest, these exact and approximate results serve as a backdrop and a consistency check on ongoing efforts to find general model-independent estimates for QNFs, and general model-independent bounds on transmission probabilities. Our calculations also provide yet another physics application of the Lambert W function. These ideas have relevance to fields as diverse as black hole physics, (where they are related to the damped oscillations of astrophysical black holes, to greybody factors for the Hawking radiation, and to more speculative state-counting models for the Bekenstein entropy), to quantum field theory (where they are related to Casimir energies in unbounded systems), through to condensed matter physics, (where one may literally be interested in an electron tunelling through a physical barrier).Comment: V1: 29 pages; V2: Reformatted, 31 pages. Title changed to reflect major additions and revisions. Now describes exact QNFs for the double-delta potential in terms of the Lambert W function. V3: Minor edits for clarity. Four references added. No physics changes. Still 31 page

    Lambert W random variables - a new family of generalized skewed distributions with applications to risk estimation

    Full text link
    Originating from a system theory and an input/output point of view, I introduce a new class of generalized distributions. A parametric nonlinear transformation converts a random variable XX into a so-called Lambert WW random variable YY, which allows a very flexible approach to model skewed data. Its shape depends on the shape of XX and a skewness parameter γ\gamma. In particular, for symmetric XX and nonzero γ\gamma the output YY is skewed. Its distribution and density function are particular variants of their input counterparts. Maximum likelihood and method of moments estimators are presented, and simulations show that in the symmetric case additional estimation of γ\gamma does not affect the quality of other parameter estimates. Applications in finance and biomedicine show the relevance of this class of distributions, which is particularly useful for slightly skewed data. A practical by-result of the Lambert WW framework: data can be "unskewed." The RR package http://cran.r-project.org/web/packages/LambertWLambertW developed by the author is publicly available (http://cran.r-project.orgCRAN).Comment: Published in at http://dx.doi.org/10.1214/11-AOAS457 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore